当代的大规模视觉语言模型(VLM)具有强大的表示能力,使它们无处不在,可以增强图像和文本理解任务。他们经常以对比的方式受到大量图像和相应的文本字幕的对比方式进行训练。尽管如此,VLMS经常在构图推理任务上挣扎,这些任务对对象及其属性的复杂相互作用进行了精细的了解。此失败可以归因于两个主要因素:1)对比的方法传统上专注于从现有数据集中开采负面示例。但是,该模型可能不难区分阳性检查。替代采矿的替代方法是负样本2),但现有的生成方法主要集中于生成与给定图像相关的硬性负面文本。在另一个方向上进行挖掘,即生成与给定文本相关的负面图像样本已被忽略。为了克服这两种限制,我们提出了一个框架,不仅在两个方向上矿山,而且在这两种方式(即图像和文本)中产生了有挑战性的负面样本。利用这些生成硬性负样本,我们在涉及多模式综合推理的任务中显着提高了VLMS的性能。我们的代码和数据集在https://ugorsahin.github.io/enhancing-- vlm.html上发布。
I.引言Flyrock是爆炸启动时远离采矿区的岩石质量。通常考虑的第一个参数是:负担,爆炸孔直径,深度,粉末因子间距,茎,爆炸性材料类型和sub-drill在Flyrock预测期间是可控参数。此外,爆炸工程师无法影响的岩石性能是无法控制的参数,例如压缩间距和岩石的拉伸强度。因此,爆炸工程师必须更改第一个参数,以最大程度地减少flyrock掷距离。设计了各种经验方程,以设想由爆破操作[1],[2]产生的fly架。经验模型是根据flyrock上的几个现场实验的有效参数开发的,即孔直径,爆炸性,茎,负担的密度,弹出材料,粉末因子和孔长度的初始发射速度。因此,这些经验方程的性能预测能力在许多情况下不是很有效[2],[3]。
1。一目了然的项目1 2。面食生产和增值2 2.1的一般概述。简介2 2.2。面食品种3 2.3。面食7 2.4的营养价值。意大利面的处理和增值7 3。型号小型面食处理单元在PM-FME方案9 3.1下。简介9 3.2。业务企业的形式9 3.3。发起人/所有者的背景和所需文档10 3.4。拟议项目10 3.5的背景。拟议项目和土地的位置10 3.6。意大利面处理单元11 3.7的安装能力。单元11 3.8的原材料要求。单元11 3.9的产品配置文件。面食11 3.10的制造过程。技术可访问性14 3.11。面食的市场需求和供应14 3.12。面食的营销策略15 3.13。详细的项目假设15 3.14。固定的资本投资16 3.14.A.土地和建筑物16 3.14.b.机械和设备16 3.14.C.实用程序和配件16 3.14.D.其他固定资产17 3.14.e.术前费用17 3.14.f.总固定资本投资17 3.15。营运资金要求17 3.16。总项目成本和金融手段18 3.17。人力要求18 3.18。支出,收入和盈利能力分析19 3.19。还款附表20 3.20。资产的折旧21 3.21。项目21 3.22的财务评估。植物布局23 3.23。机械供应商23 4。模型DPR的限制和企业家指南25 4.1。模型DPR 25 4.2的限制。企业家的指南25
Q.1 (a) L1 CO1 PO1 (b) L2 CO1 PO1 (c) L2 CO1 PO1 Q.2 (a) L2 CO2 PO1, PO2 (b) L2 CO2 PO1, PO2 (c) L2 CO2 PO1, PO2 Q.3 (a) L3 CO2 PO1, PO2, PO3 (b) L3 CO2 PO1, PO2, PO3 (c) L1 CO2 PO1 Q.4 (a) L3 CO2 PO1, PO2, PO3 (b) L3 CO2 PO1, PO2, PO3 (c) L2 CO2 PO1, PO2 Q.5 (a) L2 CO3 PO1, PO2, PO3 (b) L2 CO2 PO1, PO2 (c) L1 CO2 PO1, PO2 Q.6 (a) L2 CO2 PO1, PO2 (b) L2 CO2 PO1, PO2 Q.7 (a) L2 CO3 PO1, PO2, PO3 (b) L3 CO3 PO1,PO2,PO3 Q.8 (a) L2 CO3 PO1,PO2,PO3 (b) L2 CO3 PO1,PO2,PO3 (c) L1 CO3 PO1 Q.9 (a) L3 CO4 PO1,PO2,PO3 (b) L2 CO4 PO1,PO2 Q.10 (a) L2 CO4 PO1,PO2 (b) L2 CO5 PO1,PO2,PO3
通过加强学习(RLHF)将大型语言模型(LLM)与人类偏好保持一致,可以导致奖励黑客,在这种情况下,LLMS在奖励模型(RM)中利用失败(RM)以实现看似高的奖励,而无需实现基本的目标。我们在设计RMS时确定了两个主要挑战以减轻奖励黑客黑客:在RL过程中的分配变化以及人类偏好的不一致。作为解决方案,我们提出了平均奖励模型(温暖),首先对多个RM进行细调,然后在重量空间中平均它们。此策略遵循以下观察结果:在共享相同的预训练时,微调权重保持线性模式。通过平均权重,与传统的预测结合相比,温暖提高了效率,同时提高了分配变化和偏好不一致的鲁棒性的可靠性。使用最佳和RL方法,我们对摘要任务的实验表明,温暖可以提高LLM预测的总体质量和一致性;例如,用温暖调整的策略RL对单个RM进行微调的政策RL的胜利率为79.4%。
•此配置文件中显示的性能结果可能包括策略中注册的Morgan Stanley帐户的组合。这些在投资结果和投资组合的季度收益部分中没有选择的uma标签。•结果还显示了经理自己在其投资策略版本中投入的帐户的综合表现,这是在策略在SELECT UMA计划中的成立之前的表现。这些以灰色和标记的管理器为阴影。尽管这种性能是相关的,但并不能反映摩根士丹利在提供此策略中所扮演的角色,这反映在投资结果的未成阴影部分和资料组合季度收益部分。摩根士丹利(Morgan Stanley)与经理一起在同时工作,将此策略交付给其客户。出于这个原因,摩根士丹利(Morgan Stanley)并未在过渡月之后展示经理自己投资于投资策略版本的帐户的组合。因此,经理的结果和策略的结果可能会有所不同,如下所述。•如果经理的结果与策略结果之间的过渡月发生在一个四分之一的中间,则该季度或一年将在投资业绩和投资组合季度收益部分中呈现蓝色,并标记为过渡。
将驾驶行为适应新的环境,库斯和法律是自主驾驶中的一个长期问题,排除了澳大利亚车辆(AVS)的广泛部署。在本文中,我们提出了LLADA,这是一种简单而强大的工具,它使人类驾驶员和自动驾驶汽车都可以通过调整其任务和动作计划来在新的地方进行访问规则,从而在任何地方开车。llada通过利用大型语言模型(LLMS)在解释本地驾驶员手册中的流量规则方面的令人印象深刻的零弹性可推广性来实现这一目标。通过广泛的用户研究,我们表明LLADA的说明可用于消除野外野外未受的情况。我们还展示了LLADA在现实世界数据集中适应AV运动计划策略的能力; Llada优于我们所有指标的基线计划。请查看我们的网站以获取更多详细信息:Llada。
要查看此改进的明确证据,我们要求PG&E提供一份清单,以显示其新模型如何改变其缓解措施的地理目标。尽管他们无法提供此信息,但PG&E描述了使用该模型的内部过程。长期计划过程依赖于主题专家(SME)来制定降低风险措施,并且在共享和讨论模型结果的风险建模团队与中小型企业之间进行了多次会议和讨论。但是,PG&E没有保留任何正式的前后记录,无法清楚地证明对建议或建造的模型影响。使用中小企业制定缓解措施与公用事业行业的标准实践一致,用于制定分配风险措施。
抽象课程推荐系统可以通过利用用户交互数据来帮助学生识别合适或有吸引力的课程,这显示了用户和课程之间以前的参与。但是,现有课程推荐系统的普遍问题是它们倾向于优先考虑准确性而不是解释性。这些复杂模型的“黑框”性质提出了一个挑战:准确表征和建模用户的偏好,同时还提供明确的,具有预性和可解释的用户配置文件。为了解决这种限制,我们为课程推荐提出了一个新颖的知识实体感知模型,该模型称为KEAM,该模型基于知识图的详细信息支持明确的用户个人资料生成,以增强学生对建议背后的理由的理解。具体来说,我们利用知识图中编码的信息,通过更换隐藏单元来使用神经网络之间建立单位之间的连接。接下来,对模型进行了培训,可以捕获学生的偏好并创建用户配置文件,以提供可解释的建议。在两个现实世界的在线数据集上进行了全面的实验,以评估所提出的模型的有效性和解释。