在班级学习(CIL)方案中,由于阶级的偏见对当前任务的偏见引起的灾难性遗忘者长期以来一直引起了重大挑战。它主要由判别模型的特征引起。随着生成性多模式模型的日益普及,我们将探索用CIL生成的歧视模型代替歧视模型。,从歧视到生成模式过渡需要解决两个关键挑战。主要挑战在于将生成的文本信息转移到不同类别的分类中。在方面,它需要在生成框架内制定CIL的任务。为此,我们提出了一种新颖的生成性多模式模型(GMM)框架,用于类增量学习。我们的方法直接使用改编的生成模型为图像生成Labels。获得详细的文本后,我们使用文本编码器来阐述文本特征,并采用匹配的功能来确定最相似的标签与分类的标签。在传统的CIL设置中,我们在长期序列的任务方案中取得了更好的影响。under少数CIL设置,与所有当前最新方法相比,我们的精度至少提高了14%,而遗忘的遗忘明显较小。我们的代码可在https://github.com/doubleclass/gmm上找到。
本文解决了生成法定说明(CES)的挑战,涉及识别和修改最少的必要特征,以使分类器对给定图像的预测进行预测。我们提出的方法是反事实e xplanations(Time)的tept to-i mage m odels,是一种基于蒸馏的黑盒反事实技术。与以前的方法不同,此方法仅需要图像及其预测,从而忽略了分类器的结构,参数或梯度的需求。在生成反事实之前,时间将两个不同的偏见引入了文本嵌入的形式稳定扩散:与图像的结构相关联的上下文偏差和类别偏见,与目标分类器学到的类特异性特征相关。学习了这些偏见后,我们发现了使用类预测的类令牌的最佳潜在代码,并使用目标嵌入作为条件,从而产生了符合性的解释。广泛的经验研究证明,即使在黑色盒子设置中运行时,时间也可以产生可比性的解释。
使用条款本文从哈佛大学的DASH存储库下载,并根据适用于其他已发布材料(LAA)的条款和条件提供,如https://harvardwiki.atlassian.net/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/ngy/ngy/ngy5ngy5ndnde4zjgzndnde4zjgzntc5ndndndgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgiamsfyytytewy
本摘要概述了机器学习模型在网络安全领域的有效性,并强调了可解释的AI在授权安全分析师中的重要性。随着网络威胁的复杂性和复杂性的日益增长,组织正在转向高级技术,例如机器学习,以增强其防御机制。但是,传统机器学习算法的黑盒性质阻碍了其在安全操作中的采用。本文通过为机器学习模型的决策过程提供可解释的见解,探讨了可解释的AI及其潜力解决此限制的概念。通过提高透明度和问责制,可以解释的AI为安全分析师提供必要的工具,以更好地理解,验证和信任这些模型的输出。通过研究当前的研究和行业实践,这项研究强调了可解释的AI在促进人类与机器学习算法之间有效合作的重要性,最终增强了网络安全工作。
基于能量的模型 (EBM) 因其在似然建模中的通用性和简单性而具有吸引力,但传统上很难训练。我们介绍了在连续神经网络上扩展基于 MCMC 的 EBM 训练的技术,并展示了它在 ImageNet32x32、ImageNet128x128、CIFAR-10 和机器人手轨迹的高维数据域上的成功,获得了比其他似然模型更好的样本,接近当代 GAN 方法的性能,同时覆盖了数据的所有模式。我们重点介绍了隐式生成的一些独特功能,例如组合性和损坏图像重建和修复。最后,我们表明 EBM 是适用于各种任务的有用模型,实现了最先进的分布外分类、对抗鲁棒分类、最先进的持续在线类学习和连贯的长期预测轨迹推出。
开放式摄取的人类对象相互作用(HOI)的构图与检测以自然语言为指导的新型HOI的问题有关,这对于不认为以人为中心的场景至关重要。然而,先前的零射HOI检测器通常使用相同水平的图形图来模拟距离的HOI,从而在包含具有较大距离的人类对象对的场景中导致次优性能。此外,这些检测器主要依赖类别名称,并概述语言可以提供的丰富上下文信息,这对于捕获通常很少见的开放词汇概念至关重要,而单独使用类别名称的词汇量不佳。在本文中,我们引入了一种新型的端到端开放词汇HOI检测框架,该框架具有有条件的多级解码和细粒度的semantic增强(CMD-SE)(CMD-SE),从而利用了视觉语言模型(VLMS)的潜力。具体来说,我们建议通过在两部分匹配过程中结合软性结合来对具有不同特征图的不同距离的人类对象对进行建模。更重要的是,通过利用大型语言模型(LLM),例如GPT模型,我们利用了他们广泛的世界知识来生成人体部分状态的描述,以进行各种相互作用。然后,我们整合了人体部分的泛化和细粒语义,以证明相互作用的识别。在两个数据集(Swig-hoi和Hico-det)上进行的实验结果表明,我们提出的方法达到了最新的方法,可以实现开放的词汇HOI检测。代码和模型可在https://github.com/ltttpku/cmd-se-版本中使用。
为流体力学学生项目制作风洞模型的替代方法摘要基于项目的工程教育方法使得学生希望在流体力学课程中创建功能性风洞模型来测试原始设计。本文根据成本、生产时间、易用性以及设备和材料的可及性,比较了几种快速原型 (RP) 方法与用于制造流体动力学模型的传统模具/铸造技术。考虑的 RP 技术包括立体光刻 (SLA)、选择性激光烧结 (SLS)、熔融沉积成型 (FDM)、3D 打印和 CNC 加工。这些方法从数字格式的原始设计开始,而传统方法(例如使用硅橡胶或藻酸盐模具铸造)至少需要粗略的物理原型。还讨论了 RP 模型的涂层和精加工工艺。背景和介绍 德克萨斯大学奥斯汀分校机械工程系已开展了 6 年的综合计划,旨在在整个本科课程中实施基于项目的方法 [1]。该计划的一个要素包括与流体力学入门课程同时进行的风洞测试。本科流体力学实验室有两个风洞,分别有 12"x12" 和 24"x24" 的测试部分。目前,学生仅使用风洞进行经典实验,使用现成的模型(例如横流中的圆柱体和翼型)以及进行流动可视化演示。被测试的对象形状简单,提供有限的创造性实验机会。我们希望通过为学生提供设计和测试原始空气动力学模型(例如汽车车身形状)的机会来增强这种体验。这促使人们研究快速生产原始设计风洞模型的替代方法。考虑了两种根本不同的方法:(1)从粗糙的物理原型开始成型/铸造模型和(2)从数字图像创建功能性物理模型。成型/铸造技术能够生产所有尺寸和几何公差的模型。这些方法可以利用各种不同的材料进行模具制作和铸造,包括热熔胶、乳胶、硅橡胶、聚硫橡胶、聚氨酯、藻酸盐、塑料树脂、环氧树脂、蜡、泡沫、粘土和水基石膏或混凝土。设备和该多步骤过程可能很长,并且需要一定的技能来形成可重复使用的模具和铸造模型。快速原型 (RP) 是指直接从 CAD 文件制造物理对象的过程。此类原型技术包括立体光刻 (SLA)、选择性激光烧结 (SLS)、熔融沉积成型 (FDM)、3D 打印和 CNC 加工等工艺。这些工艺中的每一个都会产生耐用、持久的模型,并且可以通过各种二次表面处理来增强其性能。
生成模型的最新进展导致了模型,这些模型既可以为大多数文本输入产生现实和相关的信息。这些模型每天都用于生成数百万张图像,并具有巨大影响诸如生成艺术,数字营销和数据增强等领域。鉴于它们的影响力,重要的是要确保生成的内容反映全球的伪影和周围环境,而不是过分代表世界的某些地区。在本文中,我们使用众包研究的研究衡量了通过dall·e 2产生的普通名词(例如房屋)的地理代表,以及稳定的扩散模型,其中包括27个国家 /地区的540名参与者。为了有意地指定没有国家名称的意见,生成的图像最反映了美国之后是印度的周围,而顶级世代很少反映出所有其他国家的周围环境(平均得分少于5分中的3个)。在输入中指定国家名称的代表性增加了1。平均在5-点李克特(Dall)的李子量表上为44点。75对于稳定的扩散,许多国家的超高分数仍然很低,这突出了将来模型在地理上更具包含的需求。最后,我们研究了量化使用用户研究的产生图像的地理代表性的可行性。1
人工神经网络(ANN)是一个信息或信号处理系统,由大量简单的处理元素组成,这些元素与直接链接互连,并配合以执行并行分布式处理以解决所需的计算任务。神经网络以类似的方式处理信息。ann的灵感来自生物神经系统的方式,例如大脑的作品 - 神经网络以身作则。ANN采用与常规计算相比,解决问题的方法。传统的计算机系统使用算法方法,即遵循一组说明以解决问题。将解决问题的能力限制在我们已经理解并知道如何解决的问题上。但是,神经网络和常规算法计算不在竞争中,而是相互竞争。有些任务更适合于算法方法(例如算术操作)和更适合神经网络方法的任务。