摘要:我们提出了有关电子 - 电子散射的实验发现,其中具有可调的费米波载体,相互晶格矢量和带隙。我们在双层石墨烯(BLG)和HBN的高弹性对齐异质结构中实现这一目标。在半满点附近,对这些设备的电阻的主要贡献是由Umklapp Electron-电子(UEE)散射产生的,这使得石墨烯/HBN Moire ́设备的电阻明显大于非对齐的设备的电阻(在此处禁止UEE)。我们发现,UEE散射的强度遵循Fermi能量的通用缩放,并且在非单声道上取决于超晶格时期。UEE散射可以用电场调节,并受BLG层极化的影响。它具有强粒子 - 孔不对称;当化学电位在传导带中的电阻明显低于在价带中的电阻,这使得电子方案在潜在应用中更实用。关键字:Umklapp散射,双层石墨烯,Moire ́超晶格,层极化,棕色 - Zak振荡
已经提出了几种用于SIBS的阴极活性材料(CAM)家族,包括分层氧化物,聚苯二元组合和普鲁士蓝色类似物(PBA)。[9–11]后者由于其低成本合成方法而被认为是特别有希望的,消除了对高温处理的需求,通过使用可持续和丰富的金属(例如铁和锰)(例如铁和锰)所实现的可调氧化还原行为,以及其令人满意的能力和功能能力,并在其开放式框架结构中与大型互联型相互融合,使其综合构成了3D的开放式结构。[9,12,13]此外,它们可以在水性电解质(有限的电池电压)和类似于LIB的有机电解质中进行操作,从而实现了较高的细胞电压。[14–18]因此,对这些材料进行了强大的研究和商业化工作,包括CATL,Natron Energy和Altris等制造商。[19,20]
原子薄材料的高度可调的Moir'E异质结构的出现振兴了二维材料中复杂订单的探索。虽然对二维电子气体(2DEGS)的研究是一种古老的,例如导致发现整数和分数量子厅效应,但由于层之间的晶格间距不匹配或层之间的旋转角度的不匹配引起的Moir'E超级突变性增加了新的复杂性。这是因为纯静电门可以用于调整与完全填充由超级晶格形成的Bloch带所需的电子密度相当的,该级别的波长通常在数十纳米中。(相反,由于少数埃斯特罗姆的晶格尺度周期性,门控能否访问显微镜结构的特征。)除了允许实验者能够在单个样本中访问宽掺杂范围,在这种状态下,传统的2DEG近似将电子分散剂视为有效质量近似中的抛物线,通常不再适当,并且需要考虑到其充实的丰富度,包括与乐队拓扑的现象相连的太多。这些系统的第二个特征是,在相互作用效果等于或超过带宽的相互作用效果中,Moir´e重建的频段通常是“窄”的。因此,Moir´e异质结构已成为探索二维相互作用和拓扑相互作用的重要平台。[2]。)该评论专门用于Moir´e名册的相对较新的参赛者:与六边形硼(HBN)硝酸盐底物对齐的菱形诉状石墨烯(R5G)。首先,让我简要总结实验设置,然后再转向本评论的主要重点:他们的理论分析。(对实验的更详细讨论是在Ashvin Vishwanath的最新评论中(JCCM,2023年12月)。)n -layer菱形石墨烯由石墨烯层组成,这些石墨烯层以楼梯状模式堆叠。沿着堆叠方向捕获物理的层间隧道式汉密尔顿式隧道是让人联想到su-schrieffer-heefer模型,因为低能电子状态是限制在堆栈顶部和底部附近的“零模式”。这些“零模式”的分散体表现出n倍带触摸和从单个石墨烯层∗继承的山谷变性。如果多层的一侧(几乎)与HBN对齐,那么石墨烯和HBN之间的轻微晶格不匹配会强烈修改频带结构,从而导致几乎平坦的频段对垂直位移位移场的应用非常敏感。(许多不同的作品都研究了Pentalyer的单粒子物理;在d的较大值下进行了R5G-HBN [1]的实验,其中单粒子计算名义上给出了Chern数字C =±5的传导带(valleys以相等的和相反的方式,以时间逆转对称性的方式获得了相等和相反的数字),但与其他频段相比隔离很差(这些频段非常小)(非常小)。这使得两个实验结果非常引人注目:
moir e物理学在表征功能材料和物理特性的工程中起着重要作用,从应变驱动的运输现象到超导性。在这里,我们报告了在模型铁电ER(MN,TI)O 3上获得的导电原子力显微镜(CAFM)中Moir E条纹的观察。通过进行系统的研究,对关键实验参数对诸如扫描角度和像素密度等新兴的Moir e Fringes的影响,我们证明,观察到的条纹由于应用的栅格扫描和样本互动性的叠加而产生,并将测量的调节型对电导率进行分类,从而在扫描的Moir e vistanning scanning Moir e效应中分类。我们的发现对于CAFM对Moir E工程材料中当地运输现象的研究至关重要,这为将外在的和固有的Moir E效应区分开提供了一般指南。此外,这些实验提供了一种可能提高灵敏度的途径,通过通过更长期的MOIR E模式在空间分辨率限制下探测电导量的变化来推动局部运输测量的分辨率限制。
摘要 - 我们提出并在实验上基于双波长DFB激光器,基于四个相移的Moiré光栅(4PS-SMG)。通过在山脊波导的每一侧设计4PS光栅,在腔内的两侧进行了等效的引入,从而实现了两种π相移,从而使设备能够展示双波长激光。山脊波导每一侧的4PS-SMG的采样周期分别为4668 nm和4609 nm。可以通过电子束光刻(EBL)以高质量实现采样周期的59 nm差异。此外,侧壁光栅结构只需要一个暴露才能定义山脊波导和光栅,从而避免了与光栅和山脊波导之间的未对准有关的问题。将电流注入130 mA至210 mA范围内的DFB激光器时,该设备会提供出色的双波长性能,其功率差在两种主要模式之间的功率差不到2 dB。该设备在39.4 GHz处提供高质量的射频(RF)信号,狭窄的线宽约为5.0 MHz。索引项 - 毫米波,双波长DFB激光器,DFB半导体激光器,采样Moiré光栅。
摘要:温度和脱离点的垂直释放物可用于预测导致恶劣天气的深对流,从而威胁性质和生命。当前,预报员依赖于辐射发射和Numerical天气预测(NWP)模型的观察结果。辐射观测在时间和空间上是稀疏的,NWP模型包含固有的误差,这些误差影响了高影响事件的短期预测。这项工作使用机器学习(ML)来探索后处理NWP模型的预测,将它们与卫星数据结合起来,以改善温度和脱离点的垂直预算。我们专注于不同的ML体系结构,损耗功能和输入功能,以优化预测。因为我们正在预测大气中256个级别的垂直释放物,因此这项工作为使用ML用于一维任务提供了独特的观点。与快速刷新(RAP)的基线纤维相比,ML预测为露点提供了最大的改进,尤其是在中层和上层大气中。温度改善是模范的,但斗篷值最多提高了40%。特征重要性分析表明,ML模型主要改善了传入的RAP偏见。虽然其他模型和卫星数据对预测有所改进,但体系结构的选择比在调整结果中的特征选择更为重要。我们提出的深层U-NET通过利用输入RAP PROFER的空间上下文来表现最好;但是,在模型架构中,结果非常强大。此外,每个级别的不确定性估计值都经过良好的校准,可以为预测者提供有用的信息。
lubrizol Advanced Materials,Inc。(“ Lubrizol”)希望您对您感兴趣的表述将引起人们的关注,但是您应该警告一下,这只是一种代表性的配方,而不是商业化产品。在适用法律允许的最大范围内,Lubrizol不做任何陈述,担保或保证(无论是明示,暗示,法定还是其他),包括对特定目的的适销性或适用性的任何暗示保证,或任何信息的完整性,准确性或及时性。lubrizol认为该公式所基于的信息和数据是可靠的,但是该公式尚未经过绩效,功效或安全性的测试。在商业化之前,您应该彻底测试其配方或任何变化,包括制定方式包装,以确定其性能,功效和安全性。您有责任获得任何必要的政府许可,许可或注册。本文中没有任何内容被视为允许,建议或诱因,即未经专利所有者许可,才能实行任何专利发明。在所有司法管辖区都不得批准与此配方相关的任何索赔。不包括安全使用所需的安全处理产品安全信息。在处理之前,请阅读所有产品和安全数据表和容器标签,以进行安全使用以及身体和健康危害信息。lubrizol产品的安全数据表可从您的Lubrizol代表或分销商那里获得。
a 曼彻斯特城市大学计算数学系,John Dalton 大楼,曼彻斯特 M1 5GD,英国 b 兰开夏郡教学医院 NHS 基金会信托,普雷斯顿 PR2 9HT,英国 c 曼彻斯特大学 NHS 基金会信托,曼彻斯特 M13 9WL,英国 d 索尔福德皇家 NHS 基金会信托,Stott Lane,索尔福德 M6 8HD,英国 e Te Whatu Ora Health New Zealand Waikato,彭布罗克街,汉密尔顿 3240,新西兰 f 联合林肯郡医院 NHS 信托朝圣者医院内分泌和代谢系,波士顿 LN2 5QY,英国 g 泽西综合医院,The Parade,St Helier,JE1 3QS 泽西,英国 h 伊斯特本地区综合医院,Kings Drive,伊斯特本 BN21 2UD,英国 i 曼彻斯特城市大学科学与工程学院,John Dalton 大楼,曼彻斯特 M1 5GD,英国
摘要:近年来,Moiré材料的出现是观察许多新型相关和拓扑现象的有吸引力的平台。moiré异质结构会产生。这种轻微的晶格不匹配产生了长波长moiré模式,该模式调节电子结构并导致新颖的物理学。Moiré超晶格会导致超晶格带,电子 - 电子相互作用和非平凡拓扑结构导致了超导性观察,量子异常的霍尔效应和轨道磁化强度以及其他有趣的特性。本综述着重于Moiré材料中轨道磁性的体验观察和理论分析。这些系统具有新颖的能力,其能力受到Bloch电子的轨道磁矩主导的磁性。使用外部电场和载体浓度很容易调节这种轨道磁矩,因为它起源于量子异常效应。因此,在Moiré超晶格中发现的轨道磁性对于包括Spintronics,超低功率磁性记忆,基于自旋的神经形态计算和量子信息技术在内的广泛应用中可能具有很高的吸引力。