本报告是作为美国政府机构赞助的工作的记录而编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文中以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
图2。(a)使用GCMC模拟在87.3 K.交叉点(绿色圆圈)和通道(黄色圆圈)孔(黑色圆圈(黑色圆圈))中使用的GCMC模拟获得的PCN-224的AR吸附等温线。封闭和开放圆圈分别对应于吸附和解吸等温线。(b)从吸附发作到完整填充的不同压力,在通道(绿色)和相交(黄色)孔之间的吸附分子分布的特征快照。每个隔室中的平均分子数在每个快照下面指示。(a)中的垂直虚线表示(b)中快照的压力。框架原子颜色代码:o,红色; H,隐藏; C,灰色; n,蓝色; ZR,紫罗兰。
定期访问不可预测且抗偏差的随机性对于区块链、投票和安全分布式计算等应用非常重要。分布式随机信标协议通过在多个节点之间分配信任来满足这一需求,其中大多数节点被认为是诚实的。区块链领域的众多应用促成了几种分布式随机信标协议的提出,其中一些已经实现。然而,许多当前的随机信标系统依赖于阈值加密设置或表现出高昂的计算成本,而其他系统则期望网络是部分或有界同步的。为了克服这些限制,我们提出了 HashRand,这是一种计算和通信效率高的异步随机信标协议,它只需要安全哈希和成对安全通道即可生成信标。HashRand 的每个节点摊销通信复杂度为每个信标 O(𝜆𝑛 log (𝑛)) 位。 HashRand 的计算效率归因于单向哈希计算比离散对数指数计算的时间少两个数量级。有趣的是,除了减少开销之外,HashRand 还利用安全哈希函数对抗量子对手,实现了后量子安全性,使其有别于使用离散对数加密的其他随机信标协议。在一个由 𝑛 = 136 个节点组成的地理分布式测试平台中,HashRand 每分钟产生 78 个信标,这至少是 Spurt [IEEE S&P'22] 的 5 倍。我们还通过实施后量子安全异步 SMR 协议展示了 HashRand 的实际效用,该协议在 𝑛 = 16 个节点的 WAN 上的响应率为每秒超过 135k 个事务,延迟为 2.3 秒。
本文介绍了二次量子变分蒙特卡罗 (Q 2 VMC) 算法,这是量子化学中的一种创新算法,可显著提高求解薛定谔方程的效率和准确性。受虚时间薛定谔演化的离散化启发,Q 2 VMC 采用了一种新颖的二次更新机制,可与基于神经网络的假设无缝集成。我们进行了大量的实验,展示了 Q 2 VMC 的卓越性能,在跨各种分子系统的波函数优化中实现了更快的收敛速度和更低的基态能量,而无需额外的计算成本。这项研究不仅推动了计算量子化学领域的发展,还强调了离散化演化在变分量子算法中的重要作用,为未来的量子研究提供了一个可扩展且强大的框架。
尽管 Metropolis 等人的方法[1] 最初应用于经典的硬盘系统,但后来发现该算法对于许多不同的应用都是必不可少的。在本次演讲中,我将讨论 Metropolis 算法在量子多体问题中的一些应用。本文将严格限制在量子蒙特卡罗 (QMC) 中 Metropolis 拒绝方法的使用,而不讨论 QMC 的其他方面。Metropolis 算法的丰富性和本文的简洁性意味着我只能简要介绍这些发展中的一小部分,并且必须局限于肤浅的讨论。其他人将讨论它在凝聚态物质和格点规范理论的量子格点模型中的应用,因此我将重点关注非相对论连续体应用,特别是需要推广基本 Metropolis 算法的发展。我将只简要提及这些应用背后的物理学,而不是参考评论文章。我们对 Metropolis 算法的定义如下。假设 s 是相空间中的一个点,我们希望对分布函数 π ( s ) 进行采样。在最简单的算法中,只有一个转移概率:T ( s → s ′ )。稍后我们将把它推广到一系列转移概率。有人以概率 T ( s → s ′ ) 提出一个举动,然后以接受概率 A ( s → s ′ ) 接受或拒绝该举动。详细平衡和遍历性足以确保随机游走在足够多的迭代之后将收敛到 π ( s ) ,其中详细平衡的意思是: