图1 五种机器学习算法在训练集上的预测结果注:SVM:支持向量机算法,CTree:条件推理树算法,Decision_tree:决策树算法,Naive_Bayes:朴素贝叶斯算法,Random_Forest:
摘要:使用吸附的单链DNA(ssDNA)的单壁碳纳米管(SWCNT)作为传感器进行研究,以研究生物系统,其潜在应用从临床诊断到农业生物技术。唯一的ssDNA序列使SWCNT有选择地响应靶向分析物,例如识别神经调节剂多巴胺等(GT)N -SWCNT。尚不清楚SWCNT表面上的ssDNA构象如何有助于功能,因为观察结果仅限于脱水条件下的计算模型或实验,这与应用纳米传感器的水性生物环境有很大不同。我们通过X射线散射干涉测量法(XSI)来展示一种直接测量SSDNA几何形状的模式,该模式利用了AuNP标签产生的干扰模式,该模式由AuNP标记在SWCNT表面上与SSDNA结合在一起。我们使用XSI来量化两个(GT)N ssDNA低聚物长度(n = 6,15)的不同表面吸附的形态(n = 6,15),它们在多巴胺感应的背景下用于SWCNT,并测量SSDNA构象变化作为离子强度和多巴胺相互作用的功能。我们表明,与更长的(GT)15低聚物相比,较短的低聚物(GT)6沿SWCNT轴(SSDNA间距离为8.6±0.3 nm)采用更周期性的有序环结构(SSDNA间距离为8.6±0.3 nm)(最有可能的5'-5'-5'至14.3±1.1 nm)。在分子识别期间,XSI揭示了多巴胺在SWCNT表面同时引起吸附ssDNA的轴向伸长和径向收缩。■简介我们使用XSI探测聚合物功能化SWCNT的溶液 - 相形态的方法可以应用于感应机制的见解,并为基于纳米粒子的传感器提供了未来的设计策略。
先前的发现表明,在产后发育过程中,人脑皮质的褶皱(Sulci)的形态(Sulci)扁平。但是,以前的研究并未考虑个别参与者中沟的形态与认知发展之间的关系。在这里,我们通过利用人类参与者(6-36岁,男性和女性,n = 108; 3672 sulci)的横向PFC(LPFC)中的横截面形态神经影像学数据来填补这一空白,并从事纵向和行为的纵向和行为数据。 = 44; 2992 Sulci)。手动定义数千种硫磺表明,儿童(6-11岁)/青少年(11-18岁)和年轻人(22-36岁)的儿童(6-11岁)/青少年(22-36岁)在跨儿童和跨儿童和适当的情况下,儿童(22-36岁)的儿童(11-18岁)和年轻人(22-36岁)之间的儿童(11-18岁)和年轻人(22-36岁)之间有所不同,在儿童和适应性的情况下,儿童和良性差异差异。此外,一种与形态学和认知有关的数据驱动方法确定,四个左半球LPFC Sulci的皮质厚度的纵向变化预先介绍了推理性能的纵向变化,这是一种与LPFC有关的高级认知能力。与预先发现的结果相反,这些结果表明,与以前提出的时间相比,Sulci可能在此之后或更长的纵向时间内平坦。至关重要的是,这些结果还表明,在特定的LPFC硫磺内皮质的纵向变化在行为上是有意义的,提供了靶向结构和皮质区域,以供将来的神经图像研究研究,以研究认知能力的发展。
维持精神分裂症中脑形态变化的三种不同亚型(图1)即,i)皮层下体积减少(SC)类型(73例),ii)Globus pallidus肥大和皮质稀释剂(GP-CX)型(42例患者),III)皮质稀释(纯CX)型(39例)。在SC类型中,皮层下体积损失,尤其是海马和丘脑,最初发生,皮质变薄(左图1)。在GP-CX型中,球pallidus肥大最初发生,其次是皮质稀疏,没有其他皮层结构的严重萎缩(图。1)。在纯CX类型中,皮质
水凝胶基质的粘弹性对3D培养和生物制作组织模型系统的细胞行为敏感。先前的报道表明,在具有明显的压力松弛的水凝胶中,细胞倾向于粘附,扩散,迁移和增殖。然而,目前尚不清楚细胞是否对压力松弛的振幅更为敏感,或者对放松时间常数的反应。为了测试这一点,我们比较了在藻酸盐中最多10天培养的成纤维细胞的行为,并氧化了具有相似杨氏模量的藻酸盐水凝胶,但应力放松行为不同。我们发现成纤维细胞在水凝胶中细长,迁移和增殖更好,这些水凝胶显示出更高的应力松弛幅度。相比之下,细胞对松弛时间常数的响应不太明显且不一致。在一起,这些数据表明,最重要的是基质的应力松弛幅度,该矩阵决定了细胞局部穿透和重塑矩阵的能力,随后会导致更好的扩散,更快的迁移和更高的细胞增殖。我们得出的结论是,应力松弛振幅是用于优化3-D水凝胶中细胞行为的中心设计参数。
[1] N. Li, T. Chang, H. Gao, X. Gao 和 L. Ge, 纳米技术, 2019, 30, 415601。[2] P. Hasse Palharim、B. Lara Diego dos Reis Fusari、B. Ramos、L. Otubo 和 AC Silva Phocheiram、J. Costa Teitoxeiram光生物学。织物。 ,2022,422,113550。[3] YM Shirke 和 SP Mukherjee,CrystEngComm,2017,19,2096-2105。 [4] D. Nagy、D. Nagy、IM Szilágyi 和 X. Fan,RSC Adv. ,2016,6,33743–33754。 [5] 王晓燕,张红,刘琳,李伟,曹鹏,Mater.莱特。 ,2014,130,248–251。 [6] 顾哲,翟天临,高斌,盛晓燕,王燕,傅华,马英,姚建军,J. Phys.织物。 B, 2006, 110, 23829–23836。 [7] T. Peng, D. Ke, J. Xiao, L. Wang, J. Hu 和 L. Zan, J. Solid State Chem. ,2012,194,250-256。 [8] FJ Sotomayor、KA Cychosz 和 M. Thommes,2018 年,18。[9] M. Gotić、M. Ivanda、S. Popović 和 S. Musić,Mater。滑雪。英语。 B,2000,77,193-201。 [10] H.-F.庞晓燕. 项哲杰.李Y.-Q.傅和 X.-T.祖,物理。 Status Solidi A,2012,209,537–544。 [11] B. Gerand 和 M. Fjglarz,J. Solid State Chem. ,1987,13。[12] C. Hai-Ning,智能窗应用的光学多层涂层的制备和表征,米尼奥大学,2005 年。[13] RF Garcia-Sanchez、T. Ahmido、D. Casimir、S. Baliga 和 P. Physra.,J.织物。 A,2013,117,13825–13831。
是研究数字,维度,内容和分泌细胞器的定位的最常用和通用的方法之一是共聚焦显微镜分析。然而,可以在细胞中引起的分泌细胞器的数量,大小和形状中存在相当大的异质性。因此,需要分析大量细胞器以进行有效量化。正确评估这些参数需要一种自动,无偏的方法来处理和定量分析显微镜数据。在这里,我们描述了由Cell -Profiler软件运行的两个管道,称为OrganleleProfiler和OrganeLlecontentProfiler。这些管道线用于内皮菌落形成细胞(ECFC)的共聚焦图像,其中包含独特的分泌细胞器,称为Weibel-Palade体(WPB),以及ECFC和ECFC和人类胚胎肾脏293T(HEK293T)细胞的早期内体。结果表明,管道可以量化细胞计数,大小,细胞器计数,细胞器的大小,形状,与细胞和细胞的关系,以及在内皮和HEK293T细胞中与这些物体的距离。此外,使用管道来测量高尔基体破裂后WPB大小的减小,并在ECFC中触发CAMP介导的信号通路后量化WPB的核周聚类。此外,管道能够量化位于细胞器或细胞质中的二级信号,例如小的WPB GTPase RAB27A。使用斐济检查了细胞剖面测量值的有效性。确定,这些管道为多个细胞和细胞器类型的特性提供了强大的,高处理的定量工具。这些管道是免费的,可以在不同的细胞类型或细胞器上易于使用,并且易于编辑。
线粒体在组织稳态,压力反应和人类疾病中的重要性,结合了它们在各种结构和功能状态之间过渡的能力,使它们成为监测细胞健康的出色细胞器。因此,需要技术在各种细胞和细胞环境中准确分析和量化线粒体组织的变化。在这里,我们提出了一种创新的计算机化方法,该方法可以通过提供三十多个功能,从而实现对线粒体形状和网络体系结构的准确,多尺度,快速和具有成本效益的分析。为了促进定量结果的解释,我们介绍了两种创新:使用Kiviat-Graphs(此处称为MiteSostels图),以表示高度符合性数据和可视化各种Mito-Cellular构型的形式,以形式的形式(称为mitosoposigils)。我们在从基础条件下培养的现场正常的人皮细胞中收集的丰富数据集上测试了我们的全自动图像分析工具,或暴露于特定应力,包括UVB辐射和农药暴露。我们证明了我们的专有软件(称为Mitotouch)在控制和压力的真皮成纤维细胞之间以及正常成纤维细胞和其他细胞类型之间敏感折磨的能力(包括癌症组织衍生的成纤维细胞和原发性角膜细胞),表明我们的自动分析分析捕获了分析差异。我们的工具具有在其他研究领域(例如基于这种新颖的算法,我们报告了一种保护性天然成分的鉴定,该保护性成分对线粒体组织产生了有害氢(H2O2)的有害影响。因此,我们构思了一种新型的湿干管道,结合细胞培养物,定量成像和符号学分析,以详尽地分析活着的粘附细胞中线粒体形态。
长期以来,已经报道了蜂巢储存产品中的农药残留物。蜜蜂的幼虫在细胞内部的正常生长和发育过程中会经历口腔或接触这些产品的接触。我们分析了两种杀菌剂浓度的毒理学,形态学和免疫学作用,两种杀真菌剂的基于蜜蜂蜜蜂的幼虫Apis Mellifera的幼虫。两种杀菌剂的选定浓度(0.08、0.4、2、10和50 ppm)以1 µL/larva/cell的体积局部应用为单个和多个暴露。我们的结果表明,治疗24小时后,饲养和出现阶段的育雏存活率持续下降。与单一暴露的幼虫相比,多重暴露的最年轻的幼虫对杀菌性毒性最敏感。在较高浓度(尤其是多次暴露)中幸存下来的幼虫在成人阶段显示出几种形态缺陷。此外,二甲可唑处理的幼虫在治疗1小时后,粒细胞数量显着减少,然后在治疗24小时后增加。因此,随着测试浓度对幼虫蜂蜜蜜蜂的生存,形态和免疫力表现出不利影响,杀真菌污染构成了极大的风险。
图 2 对 122 个蚂蚁差异表达基因中的 120 个进行聚类和可视化。根据基因的表达模式,可将其分为三个簇:(a)簇 1、(b)簇 2 和(c)簇 3。使用 topGO 和 weight01 算法计算这些簇的 GO 富集分析(簇 1 为 d、簇 2 为 e、簇 3 为 f),并使用 Fisher 精确检验将簇的生物学过程的 GO 注释与整个转录组进行比较。每个条形图代表每个簇中显著富集的 GO 术语,x 轴代表显著基因的数量。