扫描速度 10.58 mm/s 10 格点/MCS 光斑尺寸 4 mm 52 × 70 × 80 (宽 × 长 × 深)格点 层高 1.25 mm 85 格点 网格间距 2 mm 50 格点 扫描方向 双向 双向
线粒体的结构和功能之间存在密切的相互作用。要理解这种复杂的关系,需要先进的成像技术来捕捉线粒体的动态特性及其对细胞过程的影响。然而,大部分关于线粒体动力学的研究都是在单细胞生物或体外细胞培养中进行的。在这里,我们介绍了一种用于实时成像秀丽隐杆线虫线粒体形态的新型遗传工具,以满足研究活体完整多细胞生物内细胞器动力学的先进技术的迫切需求。通过全面的分析,我们将我们的工具与现有方法直接进行比较,展示它们在可视化线粒体形态方面的优势,并对比它们对生物体生理学的影响。我们揭示了传统技术的局限性,同时展示了我们的方法的实用性和多功能性,包括内源性 CRISPR 标签和异位标记。通过提供根据实验目标选择最合适工具的指南,我们的工作推动了秀丽隐杆线虫的线粒体研究,并增强了不同成像模式的战略整合,以全面了解生物体内的细胞器动力学。
抽象背景:代谢过程构成了大脑发育,功能和维护的基础。尽管积累了代谢在脑部健康中至关重要的作用的证据,但迄今为止,尚未全面研究代谢活性的循环标记与普通人群体内脑形态之间的联系。方法:我们对24,940个英国生物库参与者的代谢组和MRI数据进行了单变量回归,以估算249个循环代谢标记的个体和联合关联,并通过91种全球和区域皮质厚度,表面积,表面积和亚皮层体积进行了91次测量。我们研究了已鉴定的空间模式与神经递质的脑图的相似性,并利用孟德尔随机分组来发现代谢物与大脑之间的因果关系。结果:颅内体积和总表面积与循环脂蛋白和糖蛋白乙酰基高度显着相关,相关性最高为.15。具有混合效应方向的各个标记有很强的区域关联,其不同模式涉及额叶和颞皮质厚度,脑干和心室体积。门德尔随机化提供了双向因果效应的证据,其中大多数标记会影响额叶和时间区域。讨论:结果表明循环代谢标记与全球和区域脑形态的不同模式之间的双向双向因果关系很强。产生的协会地图集提供了更好地理解代谢途径在结构性大脑发育和维持中的作用,包括健康和疾病。
如果不采取行动,到 2050 年,全球每年的细菌数量将高达 1000 万。[2,6,7] 细菌附着在表面后,会继续生长并合成胞外多糖,而胞外多糖又会促进细菌粘附在表面和其他细菌上,从而增加了清除的难度。[5,8,9] 由此产生的生物膜以及抗菌药物耐药性增加,使得开发新的有效方法来最大限度地减少细菌传播和细菌感染率成为当务之急。[10,11] 新型抗菌材料可能有助于解决这一问题,它能防止细菌的初始粘附和/或利用杀生物剂杀死附着的细菌。然而,后者还有加速抗菌药物耐药性的风险,此外还有与铜或三丁基锡等杀生物剂有关的毒性。[9,12,13]
图3基于GMV的预测模型的贡献区域。(a)基于GMV的预测模型确定了13个贡献区域(即,利益区域,ROI,ROIS),绘制了群集大小为体素数。颜色表示不同的大脑网络模块。(b)模块化分析确定了相同颜色所示的ROI的三个稳定模块(默认模式网络,DMN,蓝色;中央执行网络,CEN,黄色;和动作感知网络,APN,RED)在连通性密度含量下,范围为0.26至0.50,增量为0.01。(c)连通性密度为0.40的三个网络模块的弹簧状布局显示了每对节点之间的欧几里得距离,反映了图理论距离和线的厚度,反映了边缘的连接强度。(d)连通性密度为0.40的功能连通性矩阵(通过模块对ROI进行排序)显示边缘内部比模块之间更强的边缘强度。(e)与每个模块相关的前四个心理主题显示功能解码曲线的对数比值比。ifg,下额回(腹外侧前额叶皮层,VLPFC); MFG,中部额回(背侧前额叶皮层,DLPFC); mog,中枕回; prcg,前中央回; POCG,中心后回; precuneus; SFG,上额回(背部前额叶皮层,DMPFC); SMG;超边缘回; SPL,上顶叶; STG,上级颞回
摘要。定向能量沉积增材制造 (DED-AM) 是目前正在探索的主要 AM 技术之一,用于修复航空航天工业中的高价值部件以及大型金属部件的自由成型制造。然而,由于缺乏对底层工艺-结构-性能关系的基本了解,阻碍了 DED-AM 用于生产或修复安全关键部件。本研究使用原位和操作同步加速器 X 射线成像来提供对激光-物质相互作用及其对熔池几何形状影响的更好基本理解。结合过程建模,这些独特的观察说明了工艺参数如何影响 DED-AM 熔池几何形状。校准后的模拟可用于指导工业增材制造工艺的微观结构和质量控制。
全基因组协会研究(GWAS)对包括阿拉伯联合酋长国(UAE)在内的中东人口的研究相对较少。本研究的目的是通过基因组广泛的关联研究(GWAS)在阿联酋人群中投资基因型 - 面形态关联。通过三维(3D)扫描技术和一种自动面孔地标技术获得了172个阿联酋的表型数据(44个面部测量)。GWAS分析揭示了19个遗传基因座与六个面部特征的关联,其中14个是新颖的。GWAS分析显示,44个面部参数和242个SNP之间的11艘显着关系 - 超过了GWAS的显着性阈值。这些表型以前与身体高度,颅面缺陷和面部特征有关。这些遗传变异的最显着关联与六个主要面部特征有关,这些面部特征是面部凸状,左轨道突起,下颌骨轮廓,鼻角角D,下面部角度B和下面的面部角度A。据我们所知,这是第一项研究中东人群中SNP变化与面部形态的关联的GWAS研究。
环境参数(例如空气温度)是人类生活质量和能源效率管理的关键终端。城市地区人口稠密,并且通过城市形态和景观空间模式与其中一些自然现象高度相关。因此,预测城市计划对环境参数的影响对于适当的决定和计划以增强城市的生活条件至关重要。先前的研究强调了乌拉巴形态与空气温度之间的密切相关性,强调了在这些分析中采用三维数据的重要性。在这项研究中,我们首先引入了一种将CityGML数据转换为VoxEls的方法,该方法在大规模数据集(例如城市)的高分辨率上可以有效,快速地工作,但通过牺牲了一些建筑细节,从而限制了先前的Voxelization方法的局限性,这些方法限制了对大型量表的较高量表的较高范围,以较高的量化和无效的范围,以使其对Voxel的高度分配为高分。来自多个城市的那些体素化的3D城市数据和相应的空气温度数据用于开发机器学习模型。在模型训练之前,在输入数据上实施了高斯模糊以考虑空间关系,因此,在高斯模糊之后,空气温度和体积建筑物形态之间的相关率也会增加。这个受过训练的模型能够通过使用相应像素的构建体积信息作为输入来预测空气温度的空间分布。在模型训练之后,预测结果不仅是用均方根误差(MSE)评估的,而且一些图像相似性指标,例如结构相似性指数量度(SSIM)和学习的知觉图像贴片相似性(LPIPS)能够在评估过程中检测和考虑空间关系。这样做,该研究旨在帮助城市规划人员将环境参数纳入其计划策略,从而促进更可持续和居民的城市环境。
淋巴脉管系统为淋巴管从间质中排出流体,大分子和免疫细胞提供了必不可少的途径,并将其返回到胸腔管道符合下锁骨下静脉的血液中。为了确保功能性淋巴引流,淋巴系统包含一个复杂的血管网络,该血管对独特的细胞 - 细胞连接的调节进行了不同的调节。衬有初始淋巴管的淋巴内皮细胞形成可渗透的“纽扣样”连接,使物质进入血管。收集淋巴管形成较不可渗透的“拉链样”连接处,该连接处将淋巴在血管内保留并防止泄漏。因此,淋巴床的切片在差异化中是可渗透的,部分受其连接形态的调节。在这篇综述中,我们将讨论我们目前对调节淋巴连接形态的理解,并强调了它与发育和疾病期间淋巴渗透性的关系。我们还将讨论淋巴渗透性改变对健康中效率淋巴伏布的影响,以及它如何影响心血管疾病,重点是动脉粥样硬化。
分子或聚合物。的确,从单晶到无定形的样品时,有机场效应晶体管(OFET)的迁移率通常会下降数量级。由于缺陷浓度低的结晶样品的制造是昂贵的,而且时间很密集,因此导电无序材料的发展是一个非常可取的目标。在这里,对结构障碍与电荷流动性之间关系的基本理解对于告知未来工程的工程至关重要。几项实验性和综合研究表明,晶体分子OS中的电荷转运属于一个困难的制度,在该方案中,该电荷既不完全在散装材料上完全取代,也没有完全在单个分子上进行局部局部[5-7],[5-7]正如通常假定的那样。[8–11]我们最近使用先进的量子动力学模拟显示了单晶OS中的载体“闪烁的极性”,这些载体是波和粒子之间中途的对象。[12–14]我们发现,它们在最有引导的晶体中被最高10–20分子被离域,并在原子的热运动(晶体振动)的影响下不断改变其形状和延伸。[12]以块状结晶五苯的例子为例,我们发现,多余的孔通常在17个分子上被脱落,[12,13]与电子自旋共振数据中的实验估计值非常吻合。[15] 9.6 cm 2 v -1 s -1,[13]的计算迁移率与实验同一致,5.6 cm 2 v -1 s -1。[21][16]极化子的离域和迁移率受到电子耦合的热波动的限制(非对角线电子 - phonon耦合)和位点能量(对角线电子 - phonon耦合)。This picture, emerging from direct propagation of the time-dependent electronic Schrödinger equation coupled to nuclear motion, resembles closely, and gives support to, the transport scenario predicted by alternative approaches including transient locali- zation theory (TLT) [17,18] and delocalized charge carrier hopping based on generalized Marcus theory [19] or polaron-transformed Redfield theory [20] mapped onto动力学蒙特卡洛。