Loading...
机构名称:
¥ 3.0

环境参数(例如空气温度)是人类生活质量和能源效率管理的关键终端。城市地区人口稠密,并且通过城市形态和景观空间模式与其中一些自然现象高度相关。因此,预测城市计划对环境参数的影响对于适当的决定和计划以增强城市的生活条件至关重要。先前的研究强调了乌拉巴形态与空气温度之间的密切相关性,强调了在这些分析中采用三维数据的重要性。在这项研究中,我们首先引入了一种将CityGML数据转换为VoxEls的方法,该方法在大规模数据集(例如城市)的高分辨率上可以有效,快速地工作,但通过牺牲了一些建筑细节,从而限制了先前的Voxelization方法的局限性,这些方法限制了对大型量表的较高量表的较高范围,以较高的量化和无效的范围,以使其对Voxel的高度分配为高分。来自多个城市的那些体素化的3D城市数据和相应的空气温度数据用于开发机器学习模型。在模型训练之前,在输入数据上实施了高斯模糊以考虑空间关系,因此,在高斯模糊之后,空气温度和体积建筑物形态之间的相关率也会增加。这个受过训练的模型能够通过使用相应像素的构建体积信息作为输入来预测空气温度的空间分布。在模型训练之后,预测结果不仅是用均方根误差(MSE)评估的,而且一些图像相似性指标,例如结构相似性指数量度(SSIM)和学习的知觉图像贴片相似性(LPIPS)能够在评估过程中检测和考虑空间关系。这样做,该研究旨在帮助城市规划人员将环境参数纳入其计划策略,从而促进更可持续和居民的城市环境。

通过机器学习预测体积城市形态的气温

通过机器学习预测体积城市形态的气温PDF文件第1页

通过机器学习预测体积城市形态的气温PDF文件第2页

通过机器学习预测体积城市形态的气温PDF文件第3页

通过机器学习预测体积城市形态的气温PDF文件第4页

通过机器学习预测体积城市形态的气温PDF文件第5页

相关文件推荐