摘要肥胖是印度的全球公共卫生问题迅速增加,而印度的患病率为40.3%。本综述研究了Triphala在肥胖症治疗及其并发症中的潜在作用。方法:我们使用关键字Triphala,肥胖,DM,CVD和肠道微生物群选择了Scopus,PubMed和Google Scholar后选择相关文章。肥胖和相关并发症是通过人类肠道微生物组内的明确变化来考虑的。肥胖个体的肠道菌群含有较低比例的细菌群和大量的企业。肠道微生物群调制和振兴正在通过益生菌,益生元,合成生或粪便移植物作为预防肥胖和/或治疗策略而出现。的研究表明,丁酸酯产生细菌,如粪便核酸杆菌和akkermansia粘膜,在正常人中最大,但糖尿病患者中的菌属减半。宿主代谢综合征和心血管风险可能受到肠道微生物群的脂多糖(LPS)的影响。安慰剂对照试验得出的结论是,Triphala在减轻体重,圆周量度和体内脂肪中具有希望的作用。triphala的益生元效应,其中Triphala促进了良好的细菌的生长,同时抑制每个模型中的致病物质。临床研究在Triphala对凳子微生物组谱和炎症的影响方面仍在进行中。Triphala在改变肠道微生物群以有效治疗肥胖症及其并发症方面的作用尚待研究。在这里,我们建议Triphala通过靶向肠道微生物群来管理肥胖及其并发症的潜在作用。
后生物学,代表生物学家族的最新成员,是由于乳酸细菌(LAB)在de Man,Rogosa和Sharpe(MRS)中的发酵而产生的代谢产物,其中包括蛋白质,糖和矿物质。生物后的成分包括外多糖(EPS),短链脂肪酸(SCFA),细菌素,抗氧化剂和代谢酶。几项研究表明,生物学后具有多种特性,例如抗菌,免疫调节,抗氧化剂,抗炎,抗肥胖,抗糖尿病和抗肿瘤特性。天然多糖是指从包括藻类,植物,动物和微生物在内的生物生物中获得的多糖。多糖是分支或线性大分子,由几种主要和一些次要的单糖组成,包括葡萄糖,果糖,果糖,甘露糖,阿拉伯糖,半乳糖糖,半乳糖酸酯,半乳糖醛酸,葡萄糖糖胺,半乳糖胺或衍生物。类似于生物后,多糖也表现出抗炎,抗菌,抗肿瘤,抗病毒,免疫调节和抗氧化特性。尽管由于缺乏特定的酶,人体不能直接消化多糖,但可以通过肠道遗留细菌(包括但不限于实验室)消化它们。最近的研究表明,大量的非淀粉多糖,例如藻酸盐,富藻酸酯,壳聚糖,角叉菜胶和瓜尔胶可以降解为低分子量的寡糖寡糖,这反过来又可以为人类健康提供健康益处。这些新发现激发了我们提出基于多糖后的后生物学,也称为糖培养基及其潜在应用。我们建议可以通过益生菌发酵多糖,随后的细菌去除将提高其生产的代谢产物的安全性,包括寡糖,二糖,单糖和衍生物。这些基于多糖的后生物学可能模仿体外多糖的代谢,从而扩大了生物后的应用。诸如Akkermansia Muciniphila和其他细菌等非刺激药也可以用于糖生物生产,从而为人类健康提供了新的应用。
tfrd已在中国广泛用于治疗骨质疏松症(OP)。然而,尚未完全阐明TFRD对OP的特定分子机制。我们以前的研究也证明了TFRD可以减弱OP,临床当量剂量为67.5mg/ kg/ d是TFRD治疗的有效剂量。因此,这项研究使用67.5mg/kg作为TFRD与多磁术结合使用的剂量,以研究TFRD在OP处理中的作用机理。这项研究的目的是进一步阐明基于宏基因组和代谢组分分析的TFRD的分子机制来治疗OP。在这项研究中,使用苏木精 - 欧洲蛋白(H&E)染色,微计算机断层扫描(Micro-CT)和骨矿物质密度(BMD)分析来观察TFRD对Ovariectomized(OVX)的药理作用(OVX)。随后,进行了多组学分析,包括宏基因组学,未靶向和短链脂肪酸(SCFAS)代谢组学,以识别TFRD的抗骨质疏松机制是否与肠道微生物和相关代谢物有关。我们的结果表明,TFRD可以改善OVX大鼠小梁骨的微观和密度。17种差异物种,主要来自Akkermansia,bacteroides和phascolatcoltcontocterium Genus,OVX在SCFA中有14种相关的差分代谢产物和乙酸与TFRD相反。此外,根据未靶向的代谢组学分析的结果,发现几种代谢途径,例如苯丙氨酸代谢,苯丙氨酸,酪氨酸和色氨酸生物合成,因此可能在TFRD中起重要作用。为了进一步研究肠道微生物群和相关代谢产物之间的关系,使用了长矛人的相关分析,并表明肠道菌群(如akkermansia粘膜粘膜)可能与几种代谢物和代谢途径密切相关。
粪便菌群是胃肠道中发现的复杂而多样的细菌群落,对人类的幸福感至关重要。这种微生物包括真菌,细菌,病毒和古细菌,支持许多必不可少的功能,包括作为免疫系统调节,维生素合成和消化。粪便菌群与各种疾病有关,对于维持健康至关重要。生物信息学和测序技术的进步使其对其组成,多样性和功能有了更大的了解。fircITITES和杀菌剂构成了肠道菌群中的大部分细菌,其肌动杆菌,蛋白质细菌,verrucomicrobia和fusobacteria构成了丰度。这些细菌种群受年龄,饮食,遗传学,抗生素使用和环境的影响;较高的多样性通常与改善健康有关。短链脂肪酸(SCFA)是在乳脂杆和梭状芽胞杆菌,消化食品纤维等公司时产生的。SCFA对肠道健康至关重要。prevotella和其他细菌植物家族的成员对于复杂碳水化合物的分解至关重要。类似于双歧杆菌,肌动杆菌对肠道健康有益,尤其是在幼儿中。尽管它们不那么普遍,但蛋白质细菌包括沙门氏菌和大肠杆菌等危险物种,而verrucomicrobia(最值得注意的是,akkkermansia粘膜粘膜)可以维持健康的肠道衬里并具有抗炎质量。益生元和益生菌有能力通过重新建立微生物平衡来改善健康结果。肠道菌群是几种治疗干预措施的靶标,包括抗生素管理,粪便菌群移植(FMT),益生菌和益生元。肠道微生物群可以通过新颖的疗法(例如靶向微生物组的下一代益生菌,合成生物学和药物)来精确改变。肠道微生物脑链接,微生物组 - 脑轴以及微生物在癌症治疗中的作用将是未来研究的重点。针对微生物群的药物的有效性将通过考虑个体微生物模式的个性化药物方法来提高。关键字:粪便菌群,肠道菌群,微生物群 - 健康相互作用,短链脂肪酸(SCFA),粪便菌群移植(FMT),微生物群靶向的疗法。
我们和其他人试图证明肠道分子在癌症免疫监视中的关键影响,尤其是在抗癌治疗期间引起保护性先天和同源免疫反应方面。最引人注目的发现之一来自对抗生素(ATB)在免疫检查点抑制剂(ICI)中的免疫抑制作用的描述。首先,ATB大大降低了针对CTLA4或PD-1/PD-L1在肺和肾脏患者中的免疫疗法的功效。其次,在诊断时对粪便进行元基因组学分析预测了免疫疗法的治疗失败。第三,粪便微生物从反应或抗性癌症患者中反应或抗性的“阿凡达”肿瘤轴承啮齿动物分别赋予受体中对抗PD1/ pdl-1 ABS的敏感性或抗性。此外,我们报告说,与长期益处有关PD1封锁相关的三级淋巴器官与针对尿路上皮癌侵入癌细胞的病原体的熟练免疫反应有关。最后,我们揭示了MadCam-1是一个肠道免疫检查点,请检查TR17调节T细胞对肿瘤床的外流。最后,我们现在正在描述肠道营养不良的诊断工具(基于治疗前基线时粪便Akkermansia spp的相对丰度以及“ toposcore”),预测肺癌患者对PD1阻滞的抗性。Next, we identified various mechanisms accounting for the links between the gut microbiome and antitumor immunosurveillance: 1/ cancer causes a beta-adrenergic receptor-dependent stress ileopathy triggering the intestinal dysbiosis and contributing to tumor progression, requiring specific therapies 2/ isolation of a group of “immunogenic commensals” (such as Akkermansia粘膜菌,脆弱的B. fragilis,肠球菌及其肠植物Alistipes shahii,ruminococcus spp)能够安装IL-12依赖性的免疫反应,这是由卵泡式T helper细胞介导的,在Oxaliplatinum或Cyclophapinum和cyclophainm nimib nimib nimib nimib nimib nimib nimim nimim nimim nimim nimim(3/ s)中,毛磷脂型(3/) CD8+ T效应细胞识别的肠球菌噬菌体和癌症表位,解释了某些细菌种类的免疫原性(在小鼠和患者中),4/有害病原体(如肠球菌等)的免疫抑制作用。 (梭状芽胞杆菌梭状芽胞杆菌/玻璃体),ATB停止促进调节性T细胞向肿瘤床的肠道外流后占主导地位。这些发现具有开创性的临床实施,因为它们导致了概念验证试验,即IV期黑色素瘤中对ICI的主要抵抗力可以通过粪便微生物移植(FMT)的固化供体以及同一ICI的重新引入。
卢森堡,2024年7月15日,肠道微生物组:一种预测多发性硬化症的“水晶球”研究发现,在一项爆发的研究,营养,微生物组和免疫研究小组中,肠道危险因素可以预测疾病神经退行性疾病,多发性硬化症(MS)。新研究表明,某些肠道微生物因子可以预测这种虚弱的自身免疫性疾病的敏感性和进展。这项研究发表在著名的自然微生物学杂志上,确定了微生物“风险因素”或“生物标志物”,以预测MS的发展和严重性,对疾病诊断和管理具有重要意义。MS是一种炎症性脱髓鞘状况,影响了全世界估计有180万人。它是由于对髓磷脂的自身免疫性攻击,脑和脊髓神经周围的脂肪绝缘材料,这破坏了通过神经通过神经发送到身体其余部分的电脉冲,并导致疤痕称为斑块或硬化症。识别可用于预测MS疾病风险的参数是研究的重要领域,因为对潜在风险预测因素知之甚少。最近,肠道微生物组与神经退行性疾病有关,尽管与健康个体相比,在MS患者中报告的重要差异是其组成的重要差异,尽管特定微生物风险因素在疾病发作中的因果和功能作用仍然难以捉摸。在这种情况下,为了确定MS易感性或进展是否可以通过肠道微生物组的组成来预测,由LIH的Mahesh Desai教授领导的研究小组使用了MS的临床前模型,实验性的自身免疫性脑脊髓炎(EAE),以调查肠道微生物组的功能疗效,以及如何构成的官能机构,以及如何构建功能疗效的响应。微生物组。“这种方法使我们能够更好地研究单个宿主 - 微生物相互作用如何影响疾病的可预测性,从而克服了仅查看受MS影响和健康个体之间细菌物种相对丰富性的方法的局限性,这些人无法解释疾病易感性和进展中观察到的个体差异。”“的确,基于微生物群特征进行疾病课程的预测通常是可能的,但它并不像调查社区成员存在或丰富性那样简单。”通过在不同的遗传背景的小鼠中采用临床前模型,具有独特的复杂微生物群,研究人员揭示了特定细菌的双重作用,即Muciniphila的双重作用,其丰富性与多个MS COHORTS的疾病的疾病在不同地区的疾病中呈正相关。在本研究中,该小组研究了该细菌的因果作用,发现它与某些微生物组组成的小鼠的疾病发育较低有关,但在存在其他细菌的情况下,疾病的严重程度也会增加。
4。Ansaldo E,Slayden LC,Ching KL,Koch MA,Wolf NK,Plichta DR等。akkermansia粘膜粘膜在稳态期间诱导肠道适应性免疫反应。科学。2019; 364(6446):1179-1184。 5。 Sefik E,Geva-Zatorsky N,Oh S,Konnikova L,Zemmour D,McGuire AM等。 个体肠道共生体诱导RORγ +调节性T细胞的不同种群。 科学。 2015; 349(6251):993-997。 6。 Lathrop SK,Bloom SM,Rao SM,Nutsch K,Lio CW,Santacruz N等。 结肠共生微生物群对免疫系统的外围教育。 自然。 2011; 478(7368):250-254。 7。 Yang Y,Torchinsky MB,Gobert M,Xiong H,Xu M,Linehan JL等。 肠道Th17细胞对共生细菌抗原的聚焦特异性。 自然。 2014; 510(7503):152-156。 8。 Xu M,Pokrovskii M,Ding Y,Yi R,Au C,Harrison OJ等。 c- MAF依赖性调节性T细胞介导对肠道病原体的免疫耐受性。 自然。 2018; 554(7692):373-377。 9。 Chai JN,Peng Y,Rengarajan S,Solomon BD,AI TL,Shen Z等。 螺旋杆菌是体内平衡和炎症中结肠T细胞反应的有效驱动因素。 SCI免疫。 2017; 2(13):EAAL5068。 10。 Ivanov II,Atarashi K,Manel N,Brodie EL,Shima T,Karaoz U等。 通过分段丝状细菌诱导肠道Th17细胞。 单元格。 2009; 139(3):485-498。 11。2019; 364(6446):1179-1184。5。Sefik E,Geva-Zatorsky N,Oh S,Konnikova L,Zemmour D,McGuire AM等。个体肠道共生体诱导RORγ +调节性T细胞的不同种群。科学。2015; 349(6251):993-997。 6。 Lathrop SK,Bloom SM,Rao SM,Nutsch K,Lio CW,Santacruz N等。 结肠共生微生物群对免疫系统的外围教育。 自然。 2011; 478(7368):250-254。 7。 Yang Y,Torchinsky MB,Gobert M,Xiong H,Xu M,Linehan JL等。 肠道Th17细胞对共生细菌抗原的聚焦特异性。 自然。 2014; 510(7503):152-156。 8。 Xu M,Pokrovskii M,Ding Y,Yi R,Au C,Harrison OJ等。 c- MAF依赖性调节性T细胞介导对肠道病原体的免疫耐受性。 自然。 2018; 554(7692):373-377。 9。 Chai JN,Peng Y,Rengarajan S,Solomon BD,AI TL,Shen Z等。 螺旋杆菌是体内平衡和炎症中结肠T细胞反应的有效驱动因素。 SCI免疫。 2017; 2(13):EAAL5068。 10。 Ivanov II,Atarashi K,Manel N,Brodie EL,Shima T,Karaoz U等。 通过分段丝状细菌诱导肠道Th17细胞。 单元格。 2009; 139(3):485-498。 11。2015; 349(6251):993-997。6。Lathrop SK,Bloom SM,Rao SM,Nutsch K,Lio CW,Santacruz N等。结肠共生微生物群对免疫系统的外围教育。自然。2011; 478(7368):250-254。7。Yang Y,Torchinsky MB,Gobert M,Xiong H,Xu M,Linehan JL等。 肠道Th17细胞对共生细菌抗原的聚焦特异性。 自然。 2014; 510(7503):152-156。 8。 Xu M,Pokrovskii M,Ding Y,Yi R,Au C,Harrison OJ等。 c- MAF依赖性调节性T细胞介导对肠道病原体的免疫耐受性。 自然。 2018; 554(7692):373-377。 9。 Chai JN,Peng Y,Rengarajan S,Solomon BD,AI TL,Shen Z等。 螺旋杆菌是体内平衡和炎症中结肠T细胞反应的有效驱动因素。 SCI免疫。 2017; 2(13):EAAL5068。 10。 Ivanov II,Atarashi K,Manel N,Brodie EL,Shima T,Karaoz U等。 通过分段丝状细菌诱导肠道Th17细胞。 单元格。 2009; 139(3):485-498。 11。Yang Y,Torchinsky MB,Gobert M,Xiong H,Xu M,Linehan JL等。肠道Th17细胞对共生细菌抗原的聚焦特异性。自然。2014; 510(7503):152-156。 8。 Xu M,Pokrovskii M,Ding Y,Yi R,Au C,Harrison OJ等。 c- MAF依赖性调节性T细胞介导对肠道病原体的免疫耐受性。 自然。 2018; 554(7692):373-377。 9。 Chai JN,Peng Y,Rengarajan S,Solomon BD,AI TL,Shen Z等。 螺旋杆菌是体内平衡和炎症中结肠T细胞反应的有效驱动因素。 SCI免疫。 2017; 2(13):EAAL5068。 10。 Ivanov II,Atarashi K,Manel N,Brodie EL,Shima T,Karaoz U等。 通过分段丝状细菌诱导肠道Th17细胞。 单元格。 2009; 139(3):485-498。 11。2014; 510(7503):152-156。8。Xu M,Pokrovskii M,Ding Y,Yi R,Au C,Harrison OJ等。c- MAF依赖性调节性T细胞介导对肠道病原体的免疫耐受性。自然。2018; 554(7692):373-377。 9。 Chai JN,Peng Y,Rengarajan S,Solomon BD,AI TL,Shen Z等。 螺旋杆菌是体内平衡和炎症中结肠T细胞反应的有效驱动因素。 SCI免疫。 2017; 2(13):EAAL5068。 10。 Ivanov II,Atarashi K,Manel N,Brodie EL,Shima T,Karaoz U等。 通过分段丝状细菌诱导肠道Th17细胞。 单元格。 2009; 139(3):485-498。 11。2018; 554(7692):373-377。9。Chai JN,Peng Y,Rengarajan S,Solomon BD,AI TL,Shen Z等。螺旋杆菌是体内平衡和炎症中结肠T细胞反应的有效驱动因素。SCI免疫。 2017; 2(13):EAAL5068。 10。 Ivanov II,Atarashi K,Manel N,Brodie EL,Shima T,Karaoz U等。 通过分段丝状细菌诱导肠道Th17细胞。 单元格。 2009; 139(3):485-498。 11。SCI免疫。2017; 2(13):EAAL5068。 10。 Ivanov II,Atarashi K,Manel N,Brodie EL,Shima T,Karaoz U等。 通过分段丝状细菌诱导肠道Th17细胞。 单元格。 2009; 139(3):485-498。 11。2017; 2(13):EAAL5068。10。Ivanov II,Atarashi K,Manel N,Brodie EL,Shima T,Karaoz U等。 通过分段丝状细菌诱导肠道Th17细胞。 单元格。 2009; 139(3):485-498。 11。Ivanov II,Atarashi K,Manel N,Brodie EL,Shima T,Karaoz U等。通过分段丝状细菌诱导肠道Th17细胞。单元格。2009; 139(3):485-498。 11。2009; 139(3):485-498。11。Bilate AM,Bousbaine D,Mesin L,Agudelo M,Leube J,Kratzert A等。来自克隆T细胞前体的调节和上皮内T细胞的组织特异性出现。SCI免疫。 2016; 1(2):EAAF7471。 12。 Bilate Am,Lafaille JJ。 在免疫耐受性中诱导的CD4+ FOXP3+调节T细胞。 Annu Rev Immunol。 2012; 30:733-758。 13。 页岩M,Schiering C,Powrie F.肠炎中的CD 4+ T细胞子集。 Immunol Rev. 2013; 252(1):164-182。 14。 Sujino T,伦敦M,Hoytema van Konijnenburg DP,Rendon T,Buch T,Silva HM等。 调节和上皮内CD4+ T细胞的组织适应控制肠道炎症。 科学。 2016; 352(6293):1581-1586。 15。 Reis BS,Rogoz A,Costa-Pinto FA,Taniuchi I,MucidaD。转录因子Runx3和ThPOK的相互表达调节肠道CD4+ T细胞免疫。 nat免疫。 2013; 14(3):271-280。SCI免疫。2016; 1(2):EAAF7471。 12。 Bilate Am,Lafaille JJ。 在免疫耐受性中诱导的CD4+ FOXP3+调节T细胞。 Annu Rev Immunol。 2012; 30:733-758。 13。 页岩M,Schiering C,Powrie F.肠炎中的CD 4+ T细胞子集。 Immunol Rev. 2013; 252(1):164-182。 14。 Sujino T,伦敦M,Hoytema van Konijnenburg DP,Rendon T,Buch T,Silva HM等。 调节和上皮内CD4+ T细胞的组织适应控制肠道炎症。 科学。 2016; 352(6293):1581-1586。 15。 Reis BS,Rogoz A,Costa-Pinto FA,Taniuchi I,MucidaD。转录因子Runx3和ThPOK的相互表达调节肠道CD4+ T细胞免疫。 nat免疫。 2013; 14(3):271-280。2016; 1(2):EAAF7471。12。Bilate Am,Lafaille JJ。在免疫耐受性中诱导的CD4+ FOXP3+调节T细胞。Annu Rev Immunol。 2012; 30:733-758。 13。 页岩M,Schiering C,Powrie F.肠炎中的CD 4+ T细胞子集。 Immunol Rev. 2013; 252(1):164-182。 14。 Sujino T,伦敦M,Hoytema van Konijnenburg DP,Rendon T,Buch T,Silva HM等。 调节和上皮内CD4+ T细胞的组织适应控制肠道炎症。 科学。 2016; 352(6293):1581-1586。 15。 Reis BS,Rogoz A,Costa-Pinto FA,Taniuchi I,MucidaD。转录因子Runx3和ThPOK的相互表达调节肠道CD4+ T细胞免疫。 nat免疫。 2013; 14(3):271-280。Annu Rev Immunol。2012; 30:733-758。 13。 页岩M,Schiering C,Powrie F.肠炎中的CD 4+ T细胞子集。 Immunol Rev. 2013; 252(1):164-182。 14。 Sujino T,伦敦M,Hoytema van Konijnenburg DP,Rendon T,Buch T,Silva HM等。 调节和上皮内CD4+ T细胞的组织适应控制肠道炎症。 科学。 2016; 352(6293):1581-1586。 15。 Reis BS,Rogoz A,Costa-Pinto FA,Taniuchi I,MucidaD。转录因子Runx3和ThPOK的相互表达调节肠道CD4+ T细胞免疫。 nat免疫。 2013; 14(3):271-280。2012; 30:733-758。13。页岩M,Schiering C,Powrie F.肠炎中的CD 4+ T细胞子集。Immunol Rev.2013; 252(1):164-182。 14。 Sujino T,伦敦M,Hoytema van Konijnenburg DP,Rendon T,Buch T,Silva HM等。 调节和上皮内CD4+ T细胞的组织适应控制肠道炎症。 科学。 2016; 352(6293):1581-1586。 15。 Reis BS,Rogoz A,Costa-Pinto FA,Taniuchi I,MucidaD。转录因子Runx3和ThPOK的相互表达调节肠道CD4+ T细胞免疫。 nat免疫。 2013; 14(3):271-280。2013; 252(1):164-182。14。Sujino T,伦敦M,Hoytema van Konijnenburg DP,Rendon T,Buch T,Silva HM等。调节和上皮内CD4+ T细胞的组织适应控制肠道炎症。科学。2016; 352(6293):1581-1586。 15。 Reis BS,Rogoz A,Costa-Pinto FA,Taniuchi I,MucidaD。转录因子Runx3和ThPOK的相互表达调节肠道CD4+ T细胞免疫。 nat免疫。 2013; 14(3):271-280。2016; 352(6293):1581-1586。15。Reis BS,Rogoz A,Costa-Pinto FA,Taniuchi I,MucidaD。转录因子Runx3和ThPOK的相互表达调节肠道CD4+ T细胞免疫。nat免疫。2013; 14(3):271-280。2013; 14(3):271-280。