该公司重新革新了电子束光刻技术,使其能够快速成型和生产,并能以最快的速度将先进封装、光子学、安全芯片 ID 和其他特殊应用推向市场。这种无掩模多柱平台是业界唯一一款电子束解决方案,它采用模块化架构,提供全晶圆直写图案化功能和精细分辨率,并针对规模进行了优化。该全自动系统具有多个微型电子束传输柱,可独立写入以实现超高吞吐量,并采用先进的算法,实现前所未有的方向控制。结果:以最低的运营成本实现最快的首片晶圆生产速度 - 这项曾经因吞吐量低而只能停留在实验室环境中的极具价值的技术,现在却适合大批量的晶圆级生产。
载卫星通信的最新进展提高了动态修改直接辐射阵列(DRA)的辐射模式的能力。这不仅对于传统的通信卫星(例如地球轨道(GEO))至关重要,而且对于低轨道(例如低地球轨道(LEO))的卫星也至关重要。关键设计因素包括光束的数量,梁宽,有效的各向同性辐射功率(EIRP)和每个梁的侧叶水平(SLL)。然而,当试图同时满足上述设计因素的要求时,在多微型方案中出现了一个挑战,这些设计因素反映为不均匀的电源分配。这导致过度饱和,尤其是由于每个光束的激活时间(通常称为激活实例),在中心位置的天线元件中。应对这一挑战,本文提出了一种平衡每个必需光束天线元件激活实例的方法。我们的重点是在位于地球表面500公里的立方体上以19 GHz运行的光束。我们引入了一种基于遗传算法(GA)的算法,以通过调节每个天线元件的重量矩阵的振幅分量来优化光束成型系数。该算法的关键约束是对每个元素激活实例的限制,避免了射频(RF)链中的过度饱和。此外,该算法可满足梁的要求,例如梁宽,SLL,指向方向和总功率。使用先前的关键设计因素,该算法将优化所需的基因,以解决所需的光束特性和约束。我们使用8×8 DRA贴片天线在三个方案中测试了该算法的有效性,该天线具有圆形极化,并在三角形晶格中排列。结果表明,我们的算法不仅符合所需的光束模式规格,而且还确保了整个天线阵列的均匀活化分布。
作为直写光刻工程师,您将处于一个独特的位置,能够支持 Multibeam 的下一代电子束写入系统。您将为这个创新的光刻平台创建和验证新颖的写入技术和关键工具自动化策略。您将结合对系统设计和物理的理解以及计算方法,以扩展系统性能。作为工艺工程团队的一员,您将与公司其他部门密切合作,尤其是我们的柱技术和软件团队以及外部合作伙伴。理想的候选人是独立、灵活的,并且喜欢在快节奏和富有创意的技术环境中工作。