N-MYC基因被认为在细胞生长或分化过程中具有潜在的作用,但尚未阐明其特定功能。N-MYC基因是细胞癌基因的MYC家庭成员,其中还包括C-MYC和L-MYC基因(1)。所有这三个基因都具有共同的特征,例如相似的组织,蛋白质编码序列中的广泛同源性块,能够与活化的Ras癌基因(4、14、20、26、28)一起转化原代大鼠胚胎成纤维细胞,以及编码蛋白质的核定位(8、17、23、23、26)。另一方面,每个MYC基因在发育阶段或组织指定性方面和某些高度不同的蛋白质编码区域都有不同的表达模式,这表明具有独特的功能作用(7,10,30)。c-myc的表达,而n-myc和l-myc的表达更为限制(30)。在产前发育期间,N-MYC在许多组织中表达,脑和肾脏水平最高。从大多数成年组织中表达戏剧性下降(10,30)。MYC基因表达已针对B淋巴细胞分化进行了详细研究(15、30)。C-MYC和N-MYC的表达发生在正常和转化的precur- sor(PRE)-B细胞中,但是N-MYC表达停止了,而当Pre-B细胞获得表面受体并分化为B细胞时,C-MYC表达仍在继续。这些发现表明,MYC家族基因的差异表达对于通过其分化途径的B淋巴样细胞的进展可能很重要(15、30)。研究MYC基因功能的一种方法是产生对表达失调的转基因动物。当征服主导性免疫球蛋白重链型三型增强子序列(E> i)时,所有MYC基因都会引起淋巴恶性肿瘤。代表表面免疫球蛋白阳性B细胞的转基因EP.-N-MYC肿瘤表达一些B级基因;这种不适当的基因表达可能是由于N-MYC表达放松的(6,15)引起的。 作为研究N-MYC功能的一种替代和互补方法,我们应用了方法的最新进展来恢复培养的哺乳动物细胞,其中内源基因已与转染的同型>重新组合。代表表面免疫球蛋白阳性B细胞的转基因EP.-N-MYC肿瘤表达一些B级基因;这种不适当的基因表达可能是由于N-MYC表达放松的(6,15)引起的。作为研究N-MYC功能的一种替代和互补方法,我们应用了方法的最新进展来恢复培养的哺乳动物细胞,其中内源基因已与转染的同型>重新组合。
摘要:复发儿童急性淋巴细胞白血病(CALL)的患者的预后仍然很差。治疗失败的主要原因是耐药性,最常见于糖皮质激素(GC)。泼尼松龙敏感和耐药性淋巴细胞之间的分子差异未得到充分研究,从而排除了新型和靶向疗法的发展。因此,这项工作的目的是阐明匹配的GC敏感和耐药细胞系之间分子差异的至少某些方面。为解决这个问题,我们进行了整合的转录组和代谢组学分析,该分析表明,缺乏对泼尼松龙的反应可能是由于氧化磷酸化,糖溶解,氨基酸,丙酮酸和核苷酸生物合成的变化而受到的基础,以及MTORC1和MyC的激活以及Myc的激活,以及Myc的激活,以及Myc的激活。试图通过三种不同的策略探索我们分析中抑制一种打击的潜在治疗作用,以三种不同的策略为目标,它们针对谷氨酰胺 - 谷氨酸 - α-酮戊二酸轴轴,所有策略都受损了,这些策略都受损了,这些策略受损,线粒体呼吸和ATP产生和诱导了凋亡。因此,我们报告说,泼尼松龙的抗性可能伴随着相当大的转录和生物合成程序的重新布线。在这项研究中确定的其他可药物靶标的抑制作用抑制谷氨酰胺代谢在GC敏感的敏感性中呈现了一种潜在的治疗方法,但更重要的是,在GC耐药的呼叫细胞中。最后,在复发的背景下,这些发现可能在临床上具有相关性 - 在公开可用的数据集中,我们发现基因表达模式表明,体内耐药性的特征在于与我们在体外模型中发现的相似代谢失调。
过去几十年来,癌症生物学取得了巨大进步,阐明了与癌症有关的几条关键细胞通路,包括 Kirsten 大鼠肉瘤 2 病毒致癌基因同源物 (KRAS)、MYC 原癌基因 (MYC)、P53 和视网膜母细胞瘤 (RB),以及某些免疫检查点,如程序性细胞死亡蛋白 1 或其配体 (PD-(L)1) 检查点和肿瘤代谢通路,这些通路与 70% 以上的癌症发病率有关。然而,这些通路中许多已知靶点包括在肿瘤发生中发挥关键作用的蛋白酪氨酸磷酸酶 (PTP),如 Src 同源区 2 结构域磷酸酶 2 (SHP2) 和 GTP 酶,如 KRAS,直到最近才被认为是“无法用药的”,因为存在各种药物研发挑战。
摘要。髓母细胞瘤 (MB) 是最常见的儿童恶性后颅窝肿瘤。最近的遗传、表观遗传和转录组分析将 MB 分为三个亚组,即无翅型 (WNT)、Sonic Hedgehog (SHH) 和非 WNT/非 SHH(最初称为第 3 组和第 4 组),具有不同的患者特征和预后。WNT 是最不常见但预后最好的亚组,其特征是核 β-catenin 表达、Catenin beta-1 (CTNNB1) 突变和 6 号染色体单体性。SHH 肿瘤含有 GLI1、GLI2、SUFU 和 PTCH1 基因的突变和改变,这些基因组成性激活 SHH 通路。最初,TP53 基因改变和/或 MYC 扩增的存在被认为是最可靠的预后因素。然而,最近的分子分析将 SHH MB 细分为几种亚型,这些亚型具有不同的特征,例如年龄、TP53 突变、MYC 扩增、转移的存在、TERT 启动子改变、PTEN 丢失和其他染色体改变以及 SHH 通路相关基因突变。第三个非 WNT/非 SHH MB(组 3/4)亚组在遗传上高度异质性,并显示出几种分子模式,包括 MYC 和 OTX2 扩增、GFI1B 激活、KBTBD4 突变、GFI1 重排、PRDM6 增强子劫持、KDM6A 突变、LCA 组织学、10 号染色体丢失、17q 等染色体、SNCAIP 重复和 CDK6 扩增。然而,基于
胶质母细胞瘤(GBM)是最致命的脑癌,GBM干细胞(GSC)驱动治疗性耐药性和复发性。靶向GSC提供了预防肿瘤复发和改善预后的有希望的策略。我们识别SUV39H1,一种组蛋白-3,赖氨酸-9甲基转移酶,对于GSC维持和GBM进展至关重要。SUV39H1在GBM中被上调,单细胞RNA-Seq由于超增强剂介导的激活而在GSC中的表达主要显示。GSC中Suv39H1的敲低损害了它们的增殖和茎。 全细胞RNA-seq分析表明,SUV39H1调节G 2 /M细胞周期进展,干细胞维持和GSC中的细胞死亡途径。 通过将RNA-Seq数据与ATAC-SEQ数据集成在一起,我们进一步证明了SUV39H1的敲低改变了与这些途径相关的关键基因中的染色质可及性。 Chaetocin是SUV39H1抑制剂,模仿SUV39H1敲低的作用,将GSC的茎和敏化细胞降低到Temozolomide,这是标准GBM化学疗法。 在患者衍生的异种移植模型中,靶向SUV39H1抑制了GSC驱动的肿瘤生长。 在临床上,高SUV39H1表达与胶质瘤预后不良相关,支持其作为治疗靶点的相关性。 这项研究将SUV39H1确定为GSC维护的关键调节剂,并且是改善GBM治疗和患者结局的有前途的治疗靶标。GSC中Suv39H1的敲低损害了它们的增殖和茎。全细胞RNA-seq分析表明,SUV39H1调节G 2 /M细胞周期进展,干细胞维持和GSC中的细胞死亡途径。通过将RNA-Seq数据与ATAC-SEQ数据集成在一起,我们进一步证明了SUV39H1的敲低改变了与这些途径相关的关键基因中的染色质可及性。Chaetocin是SUV39H1抑制剂,模仿SUV39H1敲低的作用,将GSC的茎和敏化细胞降低到Temozolomide,这是标准GBM化学疗法。在患者衍生的异种移植模型中,靶向SUV39H1抑制了GSC驱动的肿瘤生长。在临床上,高SUV39H1表达与胶质瘤预后不良相关,支持其作为治疗靶点的相关性。这项研究将SUV39H1确定为GSC维护的关键调节剂,并且是改善GBM治疗和患者结局的有前途的治疗靶标。
Zhimin LV,Amjad Ali,Na Wang,Haojie Ren,Lijing Liu等。共同靶向CDK 4/6和C- MYC/STAT3/CCND1轴以及抑制肿瘤发生的抑制,以及对pt(II)complexpes nhh 3hh3的肿瘤发生和上皮性乳房 - 质感 - 质感 - 质感 - 质感 - 质感 - 质感 - 质感 - 层状转移。无机生物化学杂志,2024,259,pp.112661。10.1016/j.jinorgbio.2024.112661。hal-04653599
异常的替代前MRNA剪接在MYC驱动的癌症中起关键作用,因此可能代表了治疗性脆弱性。在这里,我们表明神经母细胞瘤是一种以剪接失调和剪接依赖性为特征的MYC驱动的癌症,需要剪接因子RBM39才能存活。indisulam是一种“分子胶”,其选择性地将RBM39募集到CRL4-DCAF15 E3 E3泛素连接酶以用于蛋白酶体降解,对神经母细胞瘤具有高效的有效性,导致在多种高风险疾病模型中导致无效的无毒性毒性,导致显着反应。遗传耗竭或Indisulam介导的RBM39降解可引起明显的全基因组剪接异常和细胞死亡。从机械上讲,DCAF15对RBM39和高级表达的依赖性决定了神经母细胞瘤对indisulam的精致灵敏度。我们的数据表明,通过精确抑制神经母细胞瘤的脆弱性RBM39来靶向失调的剪接体是一种有效的治疗策略。
弥漫性大 B 细胞淋巴瘤 (DLBCL) 是最常见的非霍奇金淋巴瘤 (NHL) 类型。它占美国所有 NHL 病例的约 30%-40% ( 1 - 3 )。R-CHOP 方案(环磷酰胺、阿霉素、长春新碱、泼尼松联合利妥昔单抗(一种靶向 CD20 的单克隆抗体))代表了 DLBCL 的早期治疗标准,可治愈约 60% 至 65% 的病例 ( 4 )。与反应不佳相关的 DLBCL 亚型包括活化 B 细胞 (ABC) 样亚型 ( 5 - 7 )、双表达淋巴瘤 (DEL) 和双/三打击淋巴瘤 (DHL/THL) ( 8 )。 DEL 占难治/复发 (R/R) DLBCL 病例的 50%,其定义是 MYC 和 BCL-2 的过度表达。DHL/THL 占 DLBCL 病例的 6% 至 14%,指除 BCL2 或/和 BCL6 基因外,MYC 基因还存在重排。荟萃分析和回顾性研究最初表明,在 DHL/THL 患者中,前期强化治疗可获得更好的无进展生存期 (PFS),这导致在该患者亚群中普遍使用前期 DA-EPOCH(剂量调整的依托泊苷、泼尼松、长春新碱、环磷酰胺、阿霉素)代替 R-CHOP(9、10)。然而,DA-EPOCH 也
ABL1 AKT1 AKT3 ALK AR AXL BRAF CCND1 CDK4 CDK6 CTNNB1 DDR2 EGFR ERBB2 ERBB2 ERBB3 ERBB3 ERG ESR1 ESR1 ETV1 ETV1 ETV4 ETV4 ETV5 ETV5 ETV5 ETV5 FGFR1 MAP2K2 MET MTOR MYC MYCN NRAS NTRK1 NTRK2 NTRK3 PDGFRA PIK3CA PPARG RAF1 RAS ROS1 SMO
背景信息APEX1(也称为APE,APE1,HAP1和REF-1)属于DNA修复酶AP/EXOA家族。这是一种多功能蛋白,在细胞对氧化应激的反应中起着核心作用。APEX1的两个主要活动是在DNA修复和转录因子的氧化还原调节中。APEX核酸酶是一种具有apurinic/apyrimidinic(AP)核酸内切酶,3- prime,5-Prime-脱核酸酶,DNA 3-Prime Repair二酯酶和DNA 3-Prime-phosprime-磷酸酶活性的DNA修复酶。另一方面,APEX1还发挥可逆的核氧化还原活性来调节DNA结合亲和力和转录因子的转录活性,通过控制其DNA结合结构域的氧化还原状态,例如暴露于IR后的FOS/JUN AP-1复合物。APEX1通过与负钙反应元件(NCARES)结合来参与甲状旁腺激素(PTH)表达的钙依赖性下调。当在Lys-6和Lys-7处进行乙酰化时,APEX1刺激YBX1介导的MDR1启动子活性,从而导致耐药性。它也充当了一种控制单链RNA代谢的内核酸酶。它通过优先在MYC编码区域决定因素(CRD)的UA和CA二核苷酸之间切割来调节MYC mRNA更新。与NMD1相关,APEX1在细胞周期进程过程中在RRNA质量控制过程中起作用。