DEFRA Department for Environment Food & Rural Affairs DfE Department for Education DTaP-IPV Diphtheria, Tetanus and Pertussis - Inactivated Polio Virus EHO Environmental Health Officer EPRR Emergency preparedness, resilience and response FSA Food Standards Agency HAZMAT Hazardous Materials HCAI Healthcare associated infections HEAT Health Equity Assessment Tool HIV Human Immunodeficiency Virus HPV Human Papilloma Virus ICB Integrated Care Board IPC Infection, Prevention and Control JCVI Joint Committee on Vaccination and Immunisation JSNA Joint Strategic Needs Assessment LHRP Local Health Resilience Partnership LMIC Low-Medium Income Country MenACWY Meningitis ACWY vaccine MDR Multi Drug Resistant MMR Measles Mumps and Rubella Mpox Monkeypox MRSA Methicillin Resistant Staphylococcus Aureus MSM Men that have sex with men MSSA Methicillin-Sensitive Staphylococcus aureus NBT North Bristol Trust NHSE NHS England OHID Office for Health Improvement and Disparities ONS Office for National Statistics PHE Public Health England PPV Pneumococcal vaccine PrEP Pre-exposure prophylaxis PTSD Post Traumatic Stress Disorder PWID People Who Inject Drugs RSHE Relationships and Sexual Health Education SARS严重的急性呼吸综合症STI性传播感染西南地区TB结核病的参考条款UHBW University Hospitals Bristol和Weston UKHSA UKHSA UK UK Health Security Security Agency Unaids Unaids联合联合国HIV和AIDS关于世界卫生组织
摘要:铁缺乏贫血(IDA)使人容易受到细菌感染。中性粒细胞的抗菌防御机制是由烟酰胺腺苷二核苷酸磷酸氢(NADPH)氧化爆发策划的,该爆发是铁依赖的。先前的少数研究记录了铁缺陷儿童中性粒细胞氧化爆发的减少,主要基于硝基蓝色四唑测试(NBT)。在全球范围内,使用基于流式细胞术的二氢若丹明(DHR)分析,很少有研究进行研究,而在印度则没有。目的:通过基于流式细胞仪的二氢若丹明(DHR)测定,估计铁缺乏症对5岁以下儿童中性粒细胞氧化爆发活性的影响,并将其与对照组进行比较。方法:在6个月至5岁之间的36名儿童被诊断为中度(HB 7-10 gm/dl),以降级为严重(HB <7 gm/dl)铁缺乏症贫血,作为具有相当数量的性别/年龄匹配对照的病例。分析外周血的血液学和生化参数,例如完整的铁剖面,血清维生素B12和叶酸水平。使用基于流动仪的二氢二胺(DHR)测定法评估中性粒细胞中嗜中性粒细胞的氧化爆发活性。结果:与对照组相比,铁缺乏症贫血患者的NEU促粮素的百分比显着降低了刺激性嗜中性粒细胞中的平均荧光指数和中性粒细胞氧化指数(NOI)的百分比。在情况下,血红蛋白与NOI和中性粒细胞的百分比显示出显着的正相关。结论:得出结论,中性粒细胞氧化爆发参数的显着降低表明对病原体的先天免疫反应不足,并使铁缺乏症贫血患者更容易受到感染,进一步受贫血的严重性。
可以从三个不同的层面描述生物多样性:生态系统、物种和基因。每个组成部分都有其组成和结构。通过技术进步,人类一直在改变其利用生物多样性的方式。从利用生态系统、成为猎人/采集者,到随着农业和畜牧业的出现而驯化多个物种,再到今天通过开发 NBT 来修改基因。自起源以来,人类一直将植物界作为其食物、饮料、药房、仪式和装饰品的来源。随着农业的开始,人类从自然种群中挑选出最适合自己的个体,进行定向杂交,选择认为合适的个体,丢弃其余的个体。这一过程没有任何限制。在《生物多样性公约》及其补充协议《名古屋议定书》生效之前,遗传资源属于人类,没有任何规则来管理其获取和合理使用。世界市场上有许多原产于南美洲的观赏植物品种,这些品种在原产国商业化时必须支付专利使用费。观赏植物市场需求量很大,渴望新奇,南美洲是一个生物多样性极其丰富的地区。它拥有约 600 种观赏植物(12% 为园林植物)。源自该中心的流行观赏植物有花烛、金盏花、花叶万年青、喜林芋、大岩桐、花叶芋、一串红、天芥菜、马鞭草和牵牛花(白花菜、紫花地丁和三色地丁)(De,2017 年)。在《生物多样性公约》和名古屋的框架内,观赏遗传资源可能是该市场新品种的来源,从而对该地区产生社会经济影响,产生不同资质的直接和间接雇员。另一方面,全球气候变化、优质灌溉水资源短缺、
可以从三个不同的层面描述生物多样性:生态系统、物种和基因。每个组成部分都有其组成和结构。通过技术进步,人类一直在改变其利用生物多样性的方式。从利用生态系统、成为猎人/采集者,到随着农业和畜牧业的出现而驯化多个物种,再到今天通过开发 NBT 来修改基因。自起源以来,人类一直将植物界作为其食物、饮料、药房、仪式和装饰品的来源。随着农业的开始,人类从自然种群中挑选出最适合自己的个体,进行定向杂交,选择认为合适的个体,丢弃其余的个体。这一过程没有任何限制。在《生物多样性公约》及其补充协议《名古屋议定书》生效之前,遗传资源属于人类,没有任何规则来管理其获取和合理使用。世界市场上有许多原产于南美洲的观赏植物品种,这些品种在原产国商业化时必须支付专利使用费。观赏植物市场需求量很大,渴望新奇,南美洲是一个生物多样性极其丰富的地区。它拥有约 600 种观赏植物(12% 为园林植物)。源自该中心的流行观赏植物有花烛、金盏花、花叶万年青、喜林芋、大岩桐、花叶芋、一串红、天芥菜、马鞭草和牵牛花(白花菜、紫花地丁和三色地丁)(De,2017 年)。在《生物多样性公约》和名古屋的框架内,观赏遗传资源可能是该市场新品种的来源,从而对该地区产生社会经济影响,产生不同资质的直接和间接雇员。另一方面,全球气候变化、优质灌溉水资源短缺、
生产力(Abbass等,2022)。因此,它们对与食品相关的独特品质和地理指示构成了威胁。在过去的几十年中,气候变化已经开始影响茄科作物,极端的天气模式将显着影响番茄,胡椒和茄子的产量和质量(Lee等,2018; Bhandari et al。,2021; 2021; Suman,2022; 2022; 2022; 2022; Toppino等。,2022年)。尽管某些农业实践和耕种技术可能会提供临时应对机制,但需要实施长期策略来应对脆弱地区气候变化的挑战。繁殖策略在开发气候富裕品种以及常规育种技术(CBT)和新育种技术(NBT)方面起着至关重要的作用,为增强低输入生产系统中农作物弹性提供了强大的工具(Razzaq等人,2021年,2021年; Xiong等,20222)。从历史上看,育种计划一直集中在开发抗疾病的品种上以确保可持续生产(Poczai等,2022)。通过选择性地育种自然抗性或纳入野生亲戚的抗药性基因,育种者可以增强农作物对常见疾病的韧性,例如晚枯萎病,细菌枯萎病和病毒感染。繁殖工作还针对农艺性状,可以减轻气候变化对溶阿酸作物的影响,包括干旱耐受性,耐热性,耐水性(WUE)和营养吸收效率(NUE)。同时,增强水果质量的属性是番茄,胡椒和茄子的关键育种目标(Bebeli和Mazzucato,2009年)。因此,主要的育种重点是改善特征,例如avor,营养含量,质地和保质期,将它们纳入新品种,以确保这些农作物对消费者保持吸引力并适应不断变化的市场需求。在本文中,将审查有关下一代基因分型和 - 组技术的最新技术,用于审查茄科家族中多种弹性特征的分子预测,旨在为恢复和弹性设施(RRF)NextGeneration externeration Ensteration eutlanting Plans建立研究活动的起点。
在过去的几十年中,出现了几种新的基因组技术(NGT),也称为新育种技术(NBT),其中最突出的是能够对基因组进行精确改变的基因编辑技术。后者包括定点核酸酶(SDN)技术,该技术可诱导 DNA 双链断裂,可以是类型 1(在精确位置产生随机突变)、类型 2(在精确位置产生预测修饰)和类型 3(在精确位置插入大段 DNA)、寡核苷酸定向诱变技术(ODM)、碱基编辑技术、主要编辑技术等(Broothaerts 等人,2021 年,12 – 66;Molla 等人,2021 年;不同司法管辖区的术语不同)。欧洲法院于 2018 年裁定,所有基因编辑植物均受欧盟转基因制度的监管(欧洲法院,案件 C-528/ 16 Confédération paysanne and Others [2018] ECLI:EU:C:2018:583,第 47 – 48、53 段;欧洲委员会,2021,19 – 22;解释性图 1、2)。这引发了关于监管改革的辩论。任何改革都必须在欧盟层面进行,因为欧盟内部关于转基因生物的立法在很大程度上是完全协调的,这意味着任何成员国都不能实施更严格或更宽松的规则。有必要修改欧盟关于基因编辑植物的转基因生物监管框架,因为其中一些植物只会携带传统育种技术也可能产生的基因变化。目前,在严格的转基因框架下对这些植物进行监管,没有例外或简化,这似乎是不相称的,因为它不能以预防性健康或环境保护为由(参见欧洲食品安全局的调查结果,2020 年,2,6;欧洲食品安全局,2022 年,19-20)。现行法规也不切实际。从科学的角度来看,目前还没有经过验证的方法来识别仅携带可以自然发生或可以通过常规诱变获得的突变的基因编辑植物(欧洲转基因实验室网络,2019 年,7ff)。因此,对于这些基因编辑植物及其衍生产品,欧盟对未经授权的转基因生物的“零容忍”政策以及对授权转基因生物的标签的分析控制是困难的,在某些情况下根本不可行(欧洲转基因实验室网络,2019 年,14ff,17)。
该评级继续考虑了 Groww Invest Tech Private Limited {(GIT);前身为 Nextbillion Technology Private Limited (NBT)} 在股票经纪领域的强大市场地位(截至 2023 年 12 月 31 日,在国家证券交易所 (NSE) 活跃客户方面处于领先地位)、舒适的资本化、健康的盈利能力和不断改善的轨迹以及强大的流动性状况。GIT 以“Groww”品牌运营,自 2022 财年以来,在行业顺风和创纪录的散户投资者参与资本市场的背景下,它增加了大量客户,已成为印度领先的折扣经纪商之一。GIT 是 Billionbrains Garage Ventures Private Limited (BGV;截至 2023 年 12 月 31 日拥有 GIT 99.99% 的股份) 的子公司,后者由 Groww Inc. USA(最终母公司,截至 2023 年 12 月 31 日拥有 99.99% 的股份)所有。 GIT 是该集团的第一大旗舰运营实体,也是 BGV 所提供服务收入流的主要贡献者。GIT 客户群的增长导致 2023 财年的经纪量和收益有所提高,该公司报告的净资产回报率 (RoNW) 为 13.2%,税后利润 (PAT) 为 73.1 千万卢比,净营业收入 (NOI) 为 1,294.6 千万卢比,而 2022 财年的 PAT 为 6.8 千万卢比,NOI 为 367.4 千万卢比(RoNW 为 1.8%)。2024 财年上半年的盈利能力仍呈改善趋势。截至 2023 年 3 月 31 日,GIT 的净资产为 590.0 千万卢比,对于目前的运营规模和近期增长计划而言仍然很合适。截至 2023 年 3 月,集团层面没有未偿还借款,尽管 GIT 已利用透支额度来满足间歇性短期融资需求。ICRA 指出,GIT 正准备进军保证金交易工具 (MTF) 业务,这将导致更高的借款,尽管 ICRA 预计财务杠杆将保持宽松。BGV 的净资产和流动性储备明显高于 GIT,这得益于最终母公司的股权资本注入。截至 2023 年 3 月 31 日,BGV 的综合净资产为 2,856.9 千万卢比 2,借款为零。ICRA 指出,该集团已开始向其他业务线多元化发展,这将需要在近期至中期内进行资本支出。尽管如此,资本状况预计将保持宽松,ICRA 预计集团将在需要时向 GIT 提供管理和财务支持。然而,上述积极因素被 GIT 对资本市场的高度依赖所抵消,而资本市场本质上具有波动性和周期性。此外,该集团尚未实现收入来源多元化,因为经纪收入的很大一部分来自期货和期权 (F&O) 经纪(占总经纪收入的 75-80%)。此外,它仍然容易受到监管变化以及技术风险的影响,鉴于其主要以在线业务为主以及不断发展的金融科技格局。展望未来,GIT 能够
7-氨基-3-氯甲基-3-头孢烯-4-羧酸对甲氧基苄酯盐酸盐 (ACLE) 购自 AK Scientific (加利福尼亚州联合城)。4-硝基苯硫酚 (NBT) 和 3-马来酰亚胺基丙酸购自 TCI Chemicals (日本东京)。头孢噻吩购自 P212121, LLC (马萨诸塞州波士顿)。氘代二甲基亚砜 (DMSO-d 6 ) 购自 Cambridge Isotope Laboratories (马萨诸塞州安多弗)。三乙胺 (TEA)、4-甲基吗啉 (NMM)、无水二氯甲烷 (DCM)、无水二甲基甲酰胺 (DMF)、己烷、乙醚、乙酸乙酯、薄层色谱法 (TLC) 硅胶 60 玻璃板、无水磷酸氢二钠、无水磷酸二氢钠、CENTA、二甲基亚砜 (DMSO)、三氟乙酸 (TFA)、苯甲醚、硫醇官能化的 4 臂聚乙二醇 (4 臂-PEG-SH; 20 kDa)、来自蜡样芽孢杆菌的 β L (β L-BC; cat.# P0389, 28 kDa, 2817.8 U/mg 蛋白, 4.72% 蛋白)、来自铜绿假单胞菌的 β L (β L-PA; cat.# L6170, 30 kDa, 1080 U/mg 蛋白,1% 蛋白)、来自阴沟肠杆菌的 β L(β L-EC;目录号 P4524,20-26 kDa,0.37 U/mg 蛋白,56.45% 蛋白)、来自溶组织梭菌的胶原酶、磷酸盐缓冲盐水 (PBS)、硝酸钠、阳离子调整的 M¨uller-Hinton 肉汤 (CMHB)、α-氰基-4-羟基肉桂酸、1-[双 (二甲氨基) 亚甲基]-1H-1,2,3-三唑并[4,5-b]吡啶 3-氧化物六氟磷酸盐 (HATU)、N,N-二异丙基乙胺 (DIPEA) 和盐酸 (HCl) 均购自 Millipore Sigma(密苏里州圣路易斯)。甲醇、硅胶、胰蛋白酶大豆肉汤 (TSB) 和 SYLGARD 184 硅胶弹性体试剂盒购自 Thermo Fisher Scientific (马萨诸塞州沃尔瑟姆)。甲氧基聚乙二醇硫醇 (mPEG-硫醇;1.7 kDa) 购自 Laysan Bio, Inc. (阿拉巴马州阿拉伯)。金黄色葡萄球菌菌株 25923 和 29213、耐甲氧西林金黄色葡萄球菌 (MRSA) MW2、蜡样芽孢杆菌 13061、大肠杆菌 25922 和阴沟肠杆菌 13047 购自 ATCC (弗吉尼亚州马纳萨斯)。铜绿假单胞菌 PA01 由沃尔特里德陆军研究所 (马里兰州银泉) 慷慨捐赠。大肠杆菌 DH5-α 购自 Life Technologies (加利福尼亚州卡尔斯巴德)。双马来酰亚胺-PEG 3(mal-PEG-mal,494.5 Da)购自 BroadPharm(加利福尼亚州圣地亚哥)。Repligen Biotech 纤维素酯 500-1000 Da 分子量截留 (MWCO) 透析管购自 Spectrum Labs Inc.(加利福尼亚州兰乔多明格斯)。超高纯度氮气(99.999%)购自 Airgas(罗德岛州沃里克)。所有实验均采用超纯去离子水(18.2 MΩ·cm,Millipore Sigma,马萨诸塞州比勒里卡)。本研究中提到的室温 (RT) 约为 23 ◦ C。
Ravin,St.S.,Reik,A.,Liu,P.Q.,Li,L.,Wu,X,X,South,L。和Al。 (2016)。 具有灾难粒状编年史的人类中的靶标添加。 nat。 生物技术 34,424–429。 10.1038/nbt。 (2016)。 crispr/cas9在人和干细胞中的β-珠蛋白基因。 自然539,384–389。 doi:10.1038/nature2 (2017)。 基因治疗者在CD34( +)后代和患者贫血中编辑。 贝尔摩尔。 但是。 9,1574–1588。 doi:10.15252/母亲20170750 Eyquem,J.,Mansilla-Soto,J (2017)。 自然543,113–117。 doi:10.1038/nature2 (2014)。 基因组基因组和人类重生和干细胞。 自然510,235–240。 doi:10.1038/自然 (2019)。 人类基因组编辑的造血刺激炎性疾病的细胞。 nat。 公社。 ISCIENCE 12,369–3Ravin,St.S.,Reik,A.,Liu,P.Q.,Li,L.,Wu,X,X,South,L。和Al。(2016)。具有灾难粒状编年史的人类中的靶标添加。nat。生物技术34,424–429。10.1038/nbt。(2016)。crispr/cas9在人和干细胞中的β-珠蛋白基因。自然539,384–389。doi:10.1038/nature2(2017)。基因治疗者在CD34( +)后代和患者贫血中编辑。贝尔摩尔。但是。9,1574–1588。doi:10.15252/母亲20170750 Eyquem,J.,Mansilla-Soto,J(2017)。自然543,113–117。doi:10.1038/nature2(2014)。基因组基因组和人类重生和干细胞。自然510,235–240。doi:10.1038/自然(2019)。人类基因组编辑的造血刺激炎性疾病的细胞。nat。公社。ISCIENCE 12,369–3ISCIENCE 12,369–310:4045。 doi:10.1038/s41467-019-11962-8 Greiner,V.,Bou Puerto,R.,Liu,S.,Herbel,C.,Carmona,E。M.和Goldberg,M.S。(2019)。CRISPR介导的B细胞受体在原代人B细胞中的编辑。 doi:10.1016/j.isci.2019.01.032 Hartweger,H.,McGuire,A.T.,Horning,M.,Taylor,J.J.,Dosenovic,P.,Yost P.,Yost,D。等。 (2019)。 HIV特定的体液免疫反应由CRISPR/CAS9编辑的B细胞。 J. Exp。 Med。 216,1301–1310。 doi:10.1084/jem.20190287 Hubbard,N.,Hagin,D.,Sommer,K.,Song,Y.,Khan,I.,Clough,C。等。 (2016)。 靶向基因编辑可恢复X连锁超级IGM综合征中调节的CD40L功能。 血液127,2513–2522。 doi:10.1182/Blood-2015-11-683235 Kuo,C.Y.,Long,J.D.,Campo-Fernandez,B.,De Oliveira,S.,Cooper,A.R.,Romero,Z。等。 (2018)。 部位特异性基因编辑人类造血干细胞的X连锁性高IGM综合征。 细胞代表。 23,2606–2616。 doi:10.1016/j.celrep.2018.04.103 Laoharawee,K.,Dekelver,R.C.,Podetz-Pedersen,K.M.,Rohde,M.,Sproul,S.,Nguyen,H.O。等。 (2018)。 通过ZFN介导的体内基因组编辑中的鼠MPS II中代谢和神经疾病的剂量依赖性预防。 mol。 ther。 26,1127–1136。 doi:10.1016/j.ymthe.2018.03.002 Li,H.,Haurigot,V.,Doyon,Y.,Li,T.,Wong,S.Y.,Bhagwat,A.S。等。 (2011)。 体内基因组编辑在血友病的小鼠模型中恢复止血。 自然475,217–221。 (2007)。 nat。CRISPR介导的B细胞受体在原代人B细胞中的编辑。doi:10.1016/j.isci.2019.01.032 Hartweger,H.,McGuire,A.T.,Horning,M.,Taylor,J.J.,Dosenovic,P.,Yost P.,Yost,D。等。(2019)。HIV特定的体液免疫反应由CRISPR/CAS9编辑的B细胞。 J. Exp。 Med。 216,1301–1310。 doi:10.1084/jem.20190287 Hubbard,N.,Hagin,D.,Sommer,K.,Song,Y.,Khan,I.,Clough,C。等。 (2016)。 靶向基因编辑可恢复X连锁超级IGM综合征中调节的CD40L功能。 血液127,2513–2522。 doi:10.1182/Blood-2015-11-683235 Kuo,C.Y.,Long,J.D.,Campo-Fernandez,B.,De Oliveira,S.,Cooper,A.R.,Romero,Z。等。 (2018)。 部位特异性基因编辑人类造血干细胞的X连锁性高IGM综合征。 细胞代表。 23,2606–2616。 doi:10.1016/j.celrep.2018.04.103 Laoharawee,K.,Dekelver,R.C.,Podetz-Pedersen,K.M.,Rohde,M.,Sproul,S.,Nguyen,H.O。等。 (2018)。 通过ZFN介导的体内基因组编辑中的鼠MPS II中代谢和神经疾病的剂量依赖性预防。 mol。 ther。 26,1127–1136。 doi:10.1016/j.ymthe.2018.03.002 Li,H.,Haurigot,V.,Doyon,Y.,Li,T.,Wong,S.Y.,Bhagwat,A.S。等。 (2011)。 体内基因组编辑在血友病的小鼠模型中恢复止血。 自然475,217–221。 (2007)。 nat。HIV特定的体液免疫反应由CRISPR/CAS9编辑的B细胞。J. Exp。Med。216,1301–1310。doi:10.1084/jem.20190287 Hubbard,N.,Hagin,D.,Sommer,K.,Song,Y.,Khan,I.,Clough,C。等。(2016)。靶向基因编辑可恢复X连锁超级IGM综合征中调节的CD40L功能。血液127,2513–2522。doi:10.1182/Blood-2015-11-683235 Kuo,C.Y.,Long,J.D.,Campo-Fernandez,B.,De Oliveira,S.,Cooper,A.R.,Romero,Z。等。(2018)。部位特异性基因编辑人类造血干细胞的X连锁性高IGM综合征。细胞代表。23,2606–2616。doi:10.1016/j.celrep.2018.04.103 Laoharawee,K.,Dekelver,R.C.,Podetz-Pedersen,K.M.,Rohde,M.,Sproul,S.,Nguyen,H.O。等。(2018)。通过ZFN介导的体内基因组编辑中的鼠MPS II中代谢和神经疾病的剂量依赖性预防。mol。ther。26,1127–1136。doi:10.1016/j.ymthe.2018.03.002 Li,H.,Haurigot,V.,Doyon,Y.,Li,T.,Wong,S.Y.,Bhagwat,A.S。等。(2011)。体内基因组编辑在血友病的小鼠模型中恢复止血。自然475,217–221。(2007)。nat。doi:10.1038/nature10177伦巴多(A.使用锌纤维核酸酶和整合酶缺陷式慢病毒载体递送中的人类干细胞中的基因编辑。生物技术。25,1298–1306。doi:10.1038/nbt1353 Macleod,D.T.,Antony,J.,Martin,A.J.,Moser,R.J.,Hekele,A.,Wetzel,K.J.等。(2017)。将CD19汽车的整合到TCRα链基因座中,简化了同种异体基因编辑的CAR T细胞的产生。mol。ther。25,949–961。 doi:10.1016/j.ymthe.2017.02.005 Mo i Q. (2019)。 B细胞设计用于表达病原体特异性抗体防止感染的细胞。 SCI。 免疫。 4:AAX0644。 doi:10.1126/sciimmunol.aax0644 Ou,L.,Dekelver,R.C.,Rohde,M.,Tom,S.,Radeke,R.,St Martin,S.J。等。 (2019)。 ZFN介导的体内基因组编辑纠正了鼠hurler综合征。 mol。 ther。 27,178–187。 doi:10.1016/j.ymthe.2018.10.018 OU,L.,Przybilla,M.J.,Ahlat,O. (2020)。 高度有效的PS基因编辑系统纠正了I. mol的粘多糖含量的代谢和神经系统并发症。 ther。 28,1442–1454。 doi:10.1016/j.ymthe.2020.03.018 Rai,R.,Romito,M.,Rivers,E.,Turchiano,G.,Blattner,G.,G.,Vetharoy,W。等。 (2020)。 nat。 社区。25,949–961。doi:10.1016/j.ymthe.2017.02.005 Mo i Q.(2019)。B细胞设计用于表达病原体特异性抗体防止感染的细胞。SCI。 免疫。 4:AAX0644。 doi:10.1126/sciimmunol.aax0644 Ou,L.,Dekelver,R.C.,Rohde,M.,Tom,S.,Radeke,R.,St Martin,S.J。等。 (2019)。 ZFN介导的体内基因组编辑纠正了鼠hurler综合征。 mol。 ther。 27,178–187。 doi:10.1016/j.ymthe.2018.10.018 OU,L.,Przybilla,M.J.,Ahlat,O. (2020)。 高度有效的PS基因编辑系统纠正了I. mol的粘多糖含量的代谢和神经系统并发症。 ther。 28,1442–1454。 doi:10.1016/j.ymthe.2020.03.018 Rai,R.,Romito,M.,Rivers,E.,Turchiano,G.,Blattner,G.,G.,Vetharoy,W。等。 (2020)。 nat。 社区。SCI。免疫。4:AAX0644。doi:10.1126/sciimmunol.aax0644 Ou,L.,Dekelver,R.C.,Rohde,M.,Tom,S.,Radeke,R.,St Martin,S.J。等。(2019)。ZFN介导的体内基因组编辑纠正了鼠hurler综合征。mol。ther。27,178–187。doi:10.1016/j.ymthe.2018.10.018 OU,L.,Przybilla,M.J.,Ahlat,O.(2020)。高度有效的PS基因编辑系统纠正了I. mol的粘多糖含量的代谢和神经系统并发症。ther。28,1442–1454。doi:10.1016/j.ymthe.2020.03.018 Rai,R.,Romito,M.,Rivers,E.,Turchiano,G.,Blattner,G.,G.,Vetharoy,W。等。(2020)。nat。社区。针对人类造血干细胞的靶向基因校正,以治疗Wiskott -Aldrich综合征。11:4034。 doi:10.1038/s41467-020-17626-2 Scharenberg,S.G.,Poletto,E.,Lucot,K.L.,Colella,P.,Sheikali,A.(2020)。工程单核细胞/巨噬细胞特异性葡萄糖脑苷酶
使用上述协议。瑞典印度尼西亚村庄的肖像小企业和企业家,也称为晶体管 mos。随着用户输入的字符逐个字符地出现在所有用户屏幕上,brown 和 woolley 消息发布了基于网络的 talkomatic 版本,通过超链接和 URL 链接。最后,他们确定的所有标准成为了新协议开发的先驱,该协议现在被称为 tcpip 传输控制协议互联网协议,通过超链接和 url 连接。Knnen sich auch die gebhren ndern,dass 文章 vor ort abgeholt werden knnen。