在过去的十年中,X射线自由电子激光器(例如欧洲XFEL(Euxfel))都对其仪器提出了很高的要求。尤其是在低于1 KEV的低光子能量下,需要高灵敏度的检测器,因此需要低噪声和高量子效率,以使设施使用者能够充分利用光子源的科学电位。已安装并委托具有1024 1024像素格式的1百万像素PNCCD检测器,用于在Euxfel的小量子系统(SQS)仪器的纳米尺寸量子系统(NQS)站进行成像应用。该仪器目前在0.5至3 Kevand之间的能量范围内运行。NQS站设计,用于研究强烈的FEL脉冲与簇,纳米粒子和小型生物分子的相互作用,通过将照相离子和光电光谱与一致衍射成像技术结合在一起。成像检测器的核心是PN型电荷耦合器件(PNCCD),像素螺距为75 m m 75 m m。根据实验场景,PNCCD由于其非常低的电子噪声为3 e和高量子效率,因此可以对单个光子进行成像。在此概述了Euxfel PNCCD检测器以及2019年6月在SQS实验中的调试和第一次用户操作的结果。对探测器设计和功能的详细描述,在机械上和从控件方面的Euxfel实施以及重要的数据校正步骤旨在为用户提供有用的背景,以计划和分析Euxfel的实验,并可以作为比较其他费尔斯的终点站的基准。
i. 科学卓越 ii. 工程能力 iii. 人才 iv. 创新与企业伙伴关系 四大战略重点的更多细节如下: i. 科学卓越 第一项重点侧重于加强量子研究高影响力领域的科学卓越性,例如量子通信和安全、量子处理器和量子传感。 量子技术中心 (CQT) 成立于 2007 年 12 月,是新加坡国立大学主办的首个卓越研究中心。在 NQS 下,CQT 将提升为量子技术的旗舰国家研发中心,以协调全国各地的研究人才。该中心将在不同的机构设有节点,包括 A*STAR、新加坡国立大学 (NUS)、南洋理工大学 (NTU)、新加坡科技设计大学 (SUTD) 等,开展研究人员主导的研究,使新加坡走在科学研究和创新的前沿。CQT 还将培训攻读博士和硕士学位的科学家和工程师。 ii.工程能力 第二大重点是加强新加坡在量子技术方面的工程能力,以加速将量子研究转化为现实世界的解决方案。以下国家级量子计划是推动转化量子活动的重点:
近年来,机器学习、量子多体物理学和量子信息科学等领域的交流卓有成效。这种多学科的互动在一定程度上得益于以下发现:人工神经网络为参数化量子多体希尔伯特空间的子集提供了强大的归纳偏差。尽管通过神经网络描述希尔伯特空间向量会导致无法对此类量子态子集进行精确的线性代数运算,但由于存在一种名为变分蒙特卡洛 (VMC) 的有效随机近似算法 [8,30],基于神经网络的量子态 (NQS) 能够准确揭示量子自旋系统基态的属性,并使用 VMC 的时间相关变体(即所谓的 t-VMC)模拟其时间演化 [6,7]。自从复值受限玻尔兹曼机 [ 8 ] 问世以来,神经网络量子态的范围已经扩大到涵盖各种量子系统,这通过使用日益复杂(通常是多层的)的架构成为可能。相互作用的另一个驱动因素是发现 VMC 和变分量子算法 (VQA) 之间有着密切的类似性。特别是 Stokes 等人 [ 40 ] 在量子信息几何方面的最新研究阐明了机器学习中的自然梯度下降 [ 2 ]、随机重构 VMC [ 38 ] 和量子计算中的变分虚时间演化 [ 45 ] 之间的联系。本教程论文旨在作为对连续变量量子系统的基于流的 VMC 和 t-VMC 的独立回顾。为了具体起见,我们以玻色子量子系统为例进行讨论,以场振幅基表示。场振幅基并不是 VMC 文献 3 的传统焦点,VMC 文献集中于更易于用 Fock 基解释的非相对论系统。然而,场振幅基在具有相对论对称性的系统中是自然的,其中受控玻色子哈密顿量在 L 2 空间中表示为简单的薛定谔算子。因此,哈密顿量的简单性也提供了教学优势。场振幅基的一个可能的计算优势是,它不需要人为地将允许的模式占用数限制在有限范围内以进行数值实现。为了促进
栅极金属氧化物半导体异质结构场效应晶体管 (DG MOS-HFET)”,超晶格和微结构 - ELSEVIER Publishers,第 55 卷,第 8-15 页,2013 年。ISSN:0749-6036,DOI:10.1016/j.spmi.2012.12.002(SCI 影响因子 2.12)3. Sudhansu Kumar Pati、KalyanKoley、ArkaDutta、N. Mohankumar 和 Chandan Kumar Sarkar,“一种提取具有 NQS 效应的非对称 DG MOSFET 的 RF 参数的新方法”,半导体杂志- IOP Publishers,第 55 卷34,第 2 期,第 1-5 页,2013 年 11 月。ISSN:1674-4926,DOI:10.1088/1674-4926/34/11/114002(SCI - 影响因子 1.18)4. Sudhansu Kumar Pati、KalyanKoley、ArkaDutta、N. Mohankumar 和 Chandan Kumar Sarkar,“体和氧化物厚度变化对下重叠 DG- MOSFET 模拟和 RF 性能的影响研究”,Microelectronics Reliability-Elsevier Publishers,Vol. 54,第 6-7 期,第 1137-1142 页,2014 年。ISSN:0026-2714,DOI:10.1016/j.microrel.2014.02.008 5. HemantPardeshi、Sudhansu Kumar Pati、Godwin Raj、N. Mohankumar 和 Chandan Kumar Sarkar,“欠重叠和栅极长度对 AlInN/GaN 欠重叠 MOSFET 器件性能的影响”,半导体杂志,IOP Science publishers,第 54 卷。 33, No. 12, 2012 年,第 1-7 页。ISSN:1674-4926,DOI:10.1088/1674- 4926/33/12/124001(SCI-影响因子 1.18) 6. HemantPardeshi、Sudhansu Kumar Pati、Godwin Raj、N. Mohankumar 和 Chandan Kumar Sarkar,“研究 III-V 异质结构欠重叠 DG MOSFET 中栅极错位、栅极偏置和欠重叠长度导致的不对称效应”,Physica E:低维系统和纳米结构,Elsevier,Vol. 46,第 61-67 页,2012 年。ISSN:1386-9477,DOI:10.1016/j.physe.2012.09.011(SCI 影响因子 3.57) 7. HemantPardeshi、Godwin Raj、Sudhansu Kumar Pati、N. Mohankumar 和 Chandan Kumar Sarkar,“III-V 异质结构与硅底搭接双栅极 MOSFET 的比较评估”,半导体,Springer,第 46 卷。 46,第 10 期,2012 年,第 1299–1303 页。ISSN:1090-6479,DOI:10.1134/S1063782612100119(SCI - 影响因子 0.641) 8. Godwin Raj、HemantPardeshi、Sudhansu Kumar Pati、N. Mohankumar 和 Chandan Kumar Sarkar,“基于物理的 AlGaN/GaN HEMT 器件电荷和漏极电流模型”,Journal of Electron Devices,Vol. 14,第 1155-1160 页,2012 年。ISSN:1682-3427 9. Godwin Raj、HemantPardeshi、Sudhansu Kumar Pati、N. Mohankumar 和 Chandan Kumar Sarkar,“基于极化的电荷密度漏极电流和纳米级 AlInGaN/AlN/GaN HEMT 器件的小信号模型”,超晶格和微结构,Elsevier,Vol. 54,第 188-203 页,2013 年。ISSN:0749-6036,DOI:10.1016/j.spmi.2012.11.020(SCI 影响因子 2.12) 10. HemantPardeshi、Godwin Raj、Sudhansu Kumar Pati、N. Mohankumar 和 Chandan Kumar Sarkar,“势垒厚度对 AlInN/GaN 下重叠 DG MOSFET 器件性能的影响”,超晶格与微结构,Elsevier,第 60 卷,第 47-59 页,2013 年。ISSN:0749-6036,DOI:10.1016/j.spmi.2013.04.015(SCI 影响因子 2.12)