量子信息通常比经典信息具有更丰富的结构,至少直观上是如此。第一个(但通常是错误的)想法是相位和幅度是连续的,并且量子信息可能能够存储比经典信息多出指数或无限多的信息;但这始终不正确 1 。由于经典信息和量子信息具有截然不同的性质,学界在不同背景和方向研究它们之间的区别,包括建议辅助量子计算[NY04、Aar05、Aar07、AD14、NABT14、HXY19、CLQ19、CGLQ20、GLLZ21、Liu22]、QMA 与 QCMA(即具有量子或经典见证的量子 NP)[AN02、AK07、FK18、NN22]、量子与经典通信复杂性[Yao93、BCW98、Raz99、AST + 03、BYJK04、Gav08] 等等。理解它们之间差异的一种方法是研究单向通信复杂度:即 Alice 和 Bob 想要用他们的私有输入联合计算一个函数,但 Alice 和 Bob 之间只允许进行一次量子/经典通信。在众多研究中,Bar-Yossef、Jayram 和 Kerenidis [ BYJK04 ] 展示了量子和经典单向通信复杂度之间的指数分离,即所谓的隐藏匹配问题。另一种方法是研究 QMA 与 QCMA 。2007 年,Aaronson 和 Kuperberg [ AK07 ] 展示了关于黑盒量子幺正的黑盒分离,而关于经典预言机的相同分离仍是一个悬而未决的问题。十多年后,Fefferman 和 Kimmel [ FK18 ] 使用分布式就地证明了第二种黑盒分离
对于(基于44(E))计算机软件和软件开发工具,即由基于代码的计算机程序组成的软件开发工具、用于公钥加密、认证、访问控制和数字版权管理、验证、隐私、语音和文本的机密性和完整性、语音的有线和无线传输、通信领域加密信息的 Web 服务和文本以及通信领域加密信息的认证的计算机软件;计算机固件,用于加密、认证以及语音、网络服务和文本的有线和无线传输;用于通信领域加密、解密、认证及有线和无线传输语音、网络服务和加密信息文本的计算机硬件,以及通信领域加密信息的认证、设备到设备通信、密码学、数字签名和公钥和私钥生成、安全功能(即加密、认证、授权、认证、验证、数据隐私、保密性和数据完整性)的计算机硬件;集成电路;计算机软件存储介质,即预先录制的 CD-ROM 和计算机磁盘,其中包含用于提供加密、认证、授权、身份验证、验证、数据隐私、保密性和数据完整性、计算机网络、密码、数字签名和私钥和公钥生成以及安全功能(即加密、认证、身份验证、验证、数据隐私、保密性和数据完整性)的计算机软件和文档;无线寻呼机;调制解调器;蜂窝电话;电信设备,即无线电发射机、电话发射机、SA-
最终被这种建筑环境所吞噬,我们应该清楚地了解我们融入这种建筑环境的机械系统设备的含义,就其制造过程中的自然资源消耗和污染产生而言,就其功能维护而言,就我们与自然环境的关系而言 - 技术欠发达的文化使用各种方法来承认他们对自然的依赖,祈求仪式,欢乐,服从,崇拜,装饰品,珠宝,文物,建筑环境 - 独栋房屋,大金字塔,建筑群的空间布局 - 在许多文化中,人们在不同程度上承认太阳的力量,它不仅为寒冷的天气带来温暖的缓解,而且当温暖变成难以忍受的高温时,它会消耗掉身体的能量。它不仅使庄稼长得又高又绿,而且会把它们烤焦成无用的火绒 - 随着人类技术的发展,科学力量的增强,他越来越渴望控制自然。至于阳光,他想要阳光的时候,温度适宜,他想要雨水的时候,他却自己制造了雨水。他常常不理解庇护所的意义,含糊地同时躲避所有自然元素,一味地封闭自己。他意识到
用于(基于44(E))计算机软件和软件开发工具,即由基于代码的计算机程序组成的软件开发工具、用于公钥加密、认证、访问控制和数字版权管理、验证、隐私、语音和文本的机密性和完整性、语音的有线和无线传输、通信领域加密信息的 Web 服务和文本以及通信领域加密信息的认证的计算机软件;计算机固件,用于加密、认证以及语音、网络服务和文本的有线和无线传输;用于通信领域加密、解密、认证及有线和无线传输语音、网络服务和加密信息文本的计算机硬件,以及通信领域加密信息的认证、设备到设备通信、密码学、数字签名和公钥和私钥生成、安全功能(即加密、认证、授权、认证、验证、数据隐私、保密性和数据完整性)的计算机硬件;集成电路;计算机软件存储介质,即预先录制的 CD-ROM 和计算机磁盘,其中包含用于提供加密、认证、授权、认证、验证、数据隐私、机密性和数据完整性的计算机软件和文档,COM
量子纠缠是量子力学最奇特、最有趣的性质之一 [1],它在理解量子多体系统的物理[2-4]以及支持各种量子应用(如量子计算[5]、量子传感[6]和量子通信[7])方面发挥着重要作用。目前,人们对量子纠缠的产生、操纵和检测有着浓厚的兴趣,正在许多物理系统中进行研究,包括光子[8]、原子[9-12]、离子[13],以及超导电路[14]和缺陷钻石[15]等固态系统。然而,在大多数系统中,即使是操作小型量子计算机,纠缠技巧也需要进一步改进。任意量子比特对的纠缠,尤其是不在附近的量子比特对的纠缠,对于具有良好连通性的可扩展量子系统尤为重要。尽管已经通过共模运动在囚禁离子中 [16,17] 和通过腔总线在超导电路中 [18] 实现了纠缠,但在大多数其他系统中还未能实现,包括与本文特别相关的里德堡原子系统。广泛使用的里德堡原子系统纠缠方案 [9-12] 是基于里德堡阻塞效应 [19] ,该效应禁止在阻塞半径 rb = ðC6 =ΩÞ1 =6 (由拉比频率Ω 和范德华相互作用强度 C6 定义) 内的原子之间发生双激发到里德堡能态。因此,在该方案 (参考文献 [19] 的模型 B) 中,所有且只有 rb 内的原子对同时纠缠,使这些纠缠成为短程纠缠 (d < rb)。在本文中,我们通过实验证明了弱耦合状态下的原子对纠缠(d>rb),这与文献 [19] 中的模型 A 密切相关。借助该模型,即使在存在较近的原子而不必纠缠的情况下,也可以在里德堡阻塞距离之外实现长距离原子纠缠。在弱耦合状态下,两个原子的双激发里德堡态相隔一个
因此,本期的档案(将在四月继续)专门讨论未来战争的发展。这不是一个前瞻性的尝试,而是试图提出针对性质截然不同的方法进行反思的途径。然而,不变量构成了基本原理,遗忘这些基本原理会导致失败。当然,未来的技术(特别是人工智能和数据)可以加快交战节奏并提高战场管理的复杂性。然而,战争,即使是网络形式的战争,也会带来暴力、痛苦和死亡。因此,无论是政治还是军事领袖,都发挥着重要作用。由他去理解,去选择,然后去决定。这不仅需要智力,还需要品格。这个维度至关重要且具有决定性,历史上有很多例子。今年 2020 年是 1940 年 80 周年纪念活动,人们将有机会记住,勇气是酋长的一项基本美德,从下士到将军,就像那些佩戴托加袍的人一样。
断裂和损伤力学这个术语让很多人感到有些不安。这是因为,直到最近,力学的主要重点还是材料的强度和阻力。对于某些人来说,谈论断裂就像谈论一种致命的疾病一样令人不舒服。但是,就像预防致命疾病一样,必须了解其性质、症状和行为;要确保结构的强度,必须了解其潜在故障的原因和性质。断裂问题在材料强度科学中至关重要。但是,作为可变形固体力学的一个独立分支,断裂力学不仅起源于最近,而且其边界尚未明确界定。因此,将来自许多不同科学和工程分支的代表的努力结合起来,对断裂概念进行全面研究至关重要。同样重要的是,术语的差异(这在不同科学中很常见)和普遍认为所有问题的答案都存在于一般问题的特定部分这一信念不会导致概念争议被词语争论所取代的情况。目前,常规断裂力学是研究裂纹或裂纹系统扩展的条件。但是,裂纹的性质不同,并且在不同的尺度水平上进行考虑。一种极端情况是晶粒断裂,当两个原子层之间的距离足以忽略原子之间的相互作用力时,晶粒断裂会以亚微观裂纹开始。另一个极端的例子是核反应堆焊接涡轮转子中出现的裂纹,裂纹的长度和宽度可能达到厘米;这被称为宏观断裂。在第一种情况下,裂纹扩展的条件由裂纹尖端的原子结构定义。这里考虑的是由原子而不是连续介质形成的离散晶格;因此,“裂纹尖端”的概念本身变得不确定。这种亚微观裂纹及其与其他晶格缺陷相互作用的行为的研究本质上属于固体物理学而不是力学的领域;然而,经典弹性理论的方法完全是
摘要。在过去的十年中,向密码学家的过渡一直是密码学家的巨大挑战和努力,并具有令人印象深刻的结果,例如未来的NIST标准。但是,迄今为止,后者仅考虑了中央加密机制(sig-natures或kem),而不是更先进的机制,例如针对隐私的应用程序。特别感兴趣的是一种称为盲人签名,群体签名和匿名证书的解决方案家族,标准已经存在,并且在数十亿个设备中部署。在此阶段,尽管最近的作品提供了两种不同的替代方案,但在此阶段,没有一个有效的量子后对应物,尽管有两个不同的替代方案可以改善这种情况:一个具有相当大的元素的系统,但在标准套件下证明了安全性,或者在标准的系统下获得了更高效率的系统,以更有效的系统为代价提供了Ad-Hoc Interactive互动假设或弱化的安全模型。此外,所有这些作品仅考虑了尺寸的复杂性,而没有实现其系统所组成的相当复杂的构建障碍。换句话说,此类系统的实践性仍然很难评估,如果人们设想相应系统/标准的量词后过渡,这是一个问题。在这项工作中,我们提出了具有有效协议(SEP)的所谓签名构造,这是这种隐私性的核心。通过重新审视Jeudy等人的方法。(Crypto 2023)我们设法获得了上面提到的两个替代方案中的最佳选择,即短尺寸,没有安全性妥协。为了证明这一点,我们将SEP插入一个匿名的凭证系统中,达到少于80 kb的凭证。同时,我们完全实施了我们的系统,尤其是Lyubashevsky等人的复杂零知识框架。(Crypto'22),据我们所知,到目前为止还没有完成。因此,我们的工作不仅改善了保护隐私的解决方案的最新技术,而且还大大提高了对现实世界系统部署的效率和影响的理解。
摘要。在过去的十年中,向密码学家的过渡一直是密码学家的巨大挑战和努力,并具有令人印象深刻的结果,例如未来的NIST标准。但是,迄今为止,后者仅考虑了中央加密机制(sig-natures或kem),而不是更先进的机制,例如针对隐私的应用程序。特别感兴趣的是一种称为盲人签名,群体签名和匿名证书的解决方案家族,标准已经存在,并且在数十亿个设备中部署。在此阶段,尽管最近的作品提供了两种不同的替代方案,但在此阶段,没有一个有效的量子后对应物,尽管有两个不同的替代方案可以改善这种情况:一个具有相当大的元素的系统,但在标准套件下证明了安全性,或者在标准的系统下获得了更高效率的系统,以更有效的系统为代价提供了Ad-Hoc Interactive互动假设或弱化的安全模型。此外,所有这些作品仅考虑了尺寸的复杂性,而没有实现其系统所组成的相当复杂的构建障碍。换句话说,此类系统的实践性仍然很难评估,如果人们设想相应系统/标准的量词后过渡,这是一个问题。在这项工作中,我们提出了具有有效协议(SEP)的所谓签名构造,这是这种隐私性的核心。通过重新审视Jeudy等人的方法。(Crypto 2023)我们设法获得了上面提到的两个替代方案中的最佳选择,即短尺寸,没有安全性妥协。为了证明这一点,我们将SEP插入一个匿名的凭证系统中,达到少于80 kb的凭证。同时,我们完全实施了我们的系统,尤其是Lyubashevsky等人的复杂零知识框架。(Crypto'22),据我们所知,到目前为止还没有完成。因此,我们的工作不仅改善了保护隐私的解决方案的最新技术,而且还大大提高了对现实世界系统部署的效率和影响的理解。
熵是一个非常多面的物理量。从热力学开始,相关概念已被引入许多不同的领域,如统计力学、信息论、动力系统理论、计算理论和量子理论。学术界对信息的兴趣在过去几十年中也日益增长,并被广泛认为在我们理解世界和我们与世界的关系中发挥着至关重要的作用。随着这两个概念的并行发展,它们的相互联系有望揭示出关于世界的有趣和令人惊讶的事情。本文将探讨熵和信息的一些主要主题以及它们之间联系的各种性质。本文采用准历史方法来研究这个主题,追溯这两个概念在不同时间的起源、发展和交集。因此,我们先从热力学中的熵,即其原始化身开始,然后再讨论统计力学中的熵(玻尔兹曼和吉布斯)。人们试图用分子的微观力学来简化或解释宏观热力学行为,这导致了统计力学中熵的各种定义。正是在这里,熵与信息的联系首次显现出来。然后我们继续讨论香农信息,这是通信理论中一个精确定义的数学量,它与统计力学中的熵在形式和概念上有很大相似之处。直到通信理论为我们提供了精确的信息数学表征之前,所使用的信息概念一直是粗略的、普通的语言意义上的信息,即我们学习的东西或我们用来增加知识的东西。因此,通过香农信息度量,我们能够真正评估熵和信息之间精确的形式和概念联系。埃德温·杰恩斯 (Edwin Jaynes) 对这个项目做出了重大贡献,他提出了一种看待经典统计力学的新方法,以香农信息为基础。20 世纪 60 年代,罗尔夫·兰道尔 (Rolf Landauer) 在计算理论的背景下提出了这方面的进一步发展。他提出,计算机在处理信息时不可避免地会产生熵。本文最后总结了更多现代和当前的研究课题,探索了量子理论和量子计算中的熵和信息。