量子纠缠是量子力学最奇特、最有趣的性质之一 [1],它在理解量子多体系统的物理[2-4]以及支持各种量子应用(如量子计算[5]、量子传感[6]和量子通信[7])方面发挥着重要作用。目前,人们对量子纠缠的产生、操纵和检测有着浓厚的兴趣,正在许多物理系统中进行研究,包括光子[8]、原子[9-12]、离子[13],以及超导电路[14]和缺陷钻石[15]等固态系统。然而,在大多数系统中,即使是操作小型量子计算机,纠缠技巧也需要进一步改进。任意量子比特对的纠缠,尤其是不在附近的量子比特对的纠缠,对于具有良好连通性的可扩展量子系统尤为重要。尽管已经通过共模运动在囚禁离子中 [16,17] 和通过腔总线在超导电路中 [18] 实现了纠缠,但在大多数其他系统中还未能实现,包括与本文特别相关的里德堡原子系统。广泛使用的里德堡原子系统纠缠方案 [9-12] 是基于里德堡阻塞效应 [19] ,该效应禁止在阻塞半径 rb = ðC6 =ΩÞ1 =6 (由拉比频率Ω 和范德华相互作用强度 C6 定义) 内的原子之间发生双激发到里德堡能态。因此,在该方案 (参考文献 [19] 的模型 B) 中,所有且只有 rb 内的原子对同时纠缠,使这些纠缠成为短程纠缠 (d < rb)。在本文中,我们通过实验证明了弱耦合状态下的原子对纠缠(d>rb),这与文献 [19] 中的模型 A 密切相关。借助该模型,即使在存在较近的原子而不必纠缠的情况下,也可以在里德堡阻塞距离之外实现长距离原子纠缠。在弱耦合状态下,两个原子的双激发里德堡态相隔一个
主要关键词