熵是一个非常多面的物理量。从热力学开始,相关概念已被引入许多不同的领域,如统计力学、信息论、动力系统理论、计算理论和量子理论。学术界对信息的兴趣在过去几十年中也日益增长,并被广泛认为在我们理解世界和我们与世界的关系中发挥着至关重要的作用。随着这两个概念的并行发展,它们的相互联系有望揭示出关于世界的有趣和令人惊讶的事情。本文将探讨熵和信息的一些主要主题以及它们之间联系的各种性质。本文采用准历史方法来研究这个主题,追溯这两个概念在不同时间的起源、发展和交集。因此,我们先从热力学中的熵,即其原始化身开始,然后再讨论统计力学中的熵(玻尔兹曼和吉布斯)。人们试图用分子的微观力学来简化或解释宏观热力学行为,这导致了统计力学中熵的各种定义。正是在这里,熵与信息的联系首次显现出来。然后我们继续讨论香农信息,这是通信理论中一个精确定义的数学量,它与统计力学中的熵在形式和概念上有很大相似之处。直到通信理论为我们提供了精确的信息数学表征之前,所使用的信息概念一直是粗略的、普通的语言意义上的信息,即我们学习的东西或我们用来增加知识的东西。因此,通过香农信息度量,我们能够真正评估熵和信息之间精确的形式和概念联系。埃德温·杰恩斯 (Edwin Jaynes) 对这个项目做出了重大贡献,他提出了一种看待经典统计力学的新方法,以香农信息为基础。20 世纪 60 年代,罗尔夫·兰道尔 (Rolf Landauer) 在计算理论的背景下提出了这方面的进一步发展。他提出,计算机在处理信息时不可避免地会产生熵。本文最后总结了更多现代和当前的研究课题,探索了量子理论和量子计算中的熵和信息。
主要关键词