摘要 - 我们提出了一种基于稳固的视觉范围,用于使用Sepantic Kepoints的囊室不足农业机器人。自主态下导航由于作物行之间的紧密间距(〜0。75 m),由于多径误差而导致的RTK-GPS精度降解,以及从过度混乱中的LiDAR测量中的噪声。早期的工作称为crogfollow,通过提出具有最终感知的基于学习的视觉导航系统来解决这些挑战。然而,这种方法具有以下局限性:由于缺乏置信度措施而导致的遮挡过程中缺乏可解释的表示以及对异常预测的敏感性。我们的系统Cropfollow ++,以学习的语义关键点表示,引入了模块化感知体系结构。这种学习的表示形式比Cropfollow更模块化,更可靠,并且提供了一种置信度措施来检测闭塞。cropfollow ++在涉及碰撞的数量(13 vs. 33)的现场测试中,跨越〜1的碰撞数量显着超过了cropfollow。在挑战性的后期田野中,各有9公里。我们还在各种野外条件下大规模覆盖了多个囊性播种机器人的cropfollow ++,并讨论了从中学到的关键经验教训。
人类能够通过使用各种传感器和学习的行为在复杂的环境中导航,从而使他们能够做出复杂,聪明的决策。为了解决机器人在模拟人类决策时可能在复杂环境中可能面临的潜在问题,我们提出了智能控制架构,以允许自主代理在没有大量人类干预的情况下进行操作。使用深度学习(DL)作为工具有助于从传感器数据中生成映射以控制输入,从而可以在复杂环境中为代理提供自主映射和导航。许多类似的平台使用宽传感器套件在操作过程中收集大量各种数据示例,我们将使用多模式深网络将其利用,以将传感器输入映射到控制输出。
其他天体和深空 • 将 LunaNet 框架扩展到地月之外,用于行星际和深空网络 • 高光子效率光学链路,用于 100s Mbps 直接到地球下行链路 • 高性能原子频率标准,实现单向度量跟踪数据 • 通过观察发射 X 射线的毫秒脉冲星,实现类似 GPS 的自主机载导航和计时 • 来自可用通信链路的度量跟踪数据
视线(LOS)导航是一种光学导航技术,可利用从车载成像系统获得的可见天体的方向,以估算航天器的位置和速度。将方向馈送到估计过滤器中,其中它们与观察到的物体的实际位置匹配,该位置是从船上存储的胚层检索的。作为LOS导航代表了下一代深空航天器的一个真正有希望的选择,这项工作的目的是提供有关效果的新见解。首先,分析信息矩阵以显示航天器和观察到的行星之间的几何形状的影响。然后,使用Monte Carlo方法来研究测量误差的影响(范围从0.1到100 ARCSEC)和跟踪频率(从每天的四个观测值到每两天的观察范围)。通过两个指标对导航性能的影响进行了影响。首先是3D位置和速度均方根排出,一旦估计被认为是稳态的。第二个是收敛时间,它量化了估算到达稳态行为所需的时间。模拟基于一组四个行星,这些行星不遵循共同的以heliepentric动力学的速度,而是绕太阳旋转,并以相同的(无距离)角速度的角速度旋转。这种方法允许将方案依赖性行为与导航固有属性分开,因为在整个模拟过程中观察者和观察到的对象之间的相同几何形状是相同的相对几何形状。结果为下一代自主导航系统提供了有用的指南,既可以定义硬件要求和设计适当的导航策略。然后将注意事项应用于近地球小行星的任务方案,以定义导航策略和硬件要求。显示了航天器和行星之间相对角度的重要性。在单个球衣观察方案中,当航天器和行星的位置向量之间的角度接近无效的值时,估计误差会降低。在双行星观察方案中,当两个LOS方向之间的分离角接近90时,估计误差会降低。对性能的主要影响是由测量误差驱动的,当前技术被证明能够以几百公里的顺序提供位置误差,而较低的测量误差(0.1 ARCSEC)可能在100 km以下的位置误差。最后,可以证明跟踪频率在性能中起次要作用,并且只有在收敛时间明显地影响。2022 cospar。由Elsevier B.V.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
视觉和语言导航(VLN)任务涉及使用语言命令导航移动性,并在开发自动移动性的接口中应用。在这种情况下,自然的人类交流还构成了手势和凝视等非语言提示。这些手势引导的指示已在人类机器人的互动系统中进行了探索,以有效相互作用,特别是在对象引用表达式中。ever,在户外VLN任务中应对基于手势的表达式的著名差距。为了解决这个问题,我们介绍了一个新颖的数据集,用于带有示范表达式的手势引导的户外VLN指令,并重点介绍了复杂的指令,以重新引导命令输入方式之间进行多跳的推理。此外,我们的工作还包括对收集数据的全面分析以及针对现有数据集的比较评估。
美国太空部队的全球定位系统 (GPS) 星座为作战人员提供了前所未有的定位和计时精度。自 GPS 诞生以来,它已成为一种全球公用设施,其商业用途远远超过军事用途。空中交通管制、银行、农业和蜂窝网络都依赖于不间断的 GPS 覆盖。美国下一颗实验导航卫星 NTS-3 将于 2022 年发射,它将突破当今定位、导航和计时 (PNT) 技术的界限,为更灵活、更强大、更具弹性的卫星导航技术架构铺平道路。
Samples from our Projects / Products: • Satellite data handling software for EgSACube Series and Micro-satellites (NARSSCube-1&2, NExSat-1, etc…) • On-Board computer & data handling subsystem (CDHS) for EgSACube and Micro-satellites (NARSSCube-1&2, NExSat-2) • TT&C communication subsystems for EgSACube Series and Micro-Satellites(NarSscube-1&2,nexsat-2)•Cubesat(EGSACUBE-5)和微型 - 卫星(NexSat-2)(NexSat-2)的Leo GPS接收器子系统•可配置的遥测模块(TLM)子系统,用于微型 - 卫星(Nexssat-2)(Nexssat-2)•SARTHETILE•SARTHETECERET pREATTER RADAR RADAR RADAR RADAR RADAR RADAR RADAR RADAR RADAR(
•Marisa - Saabkockums的海洋M°Artenlager的感知和导航研究平台•意识到导航 - 内省的野外机器人Martinmagnusson,obinmagnusson,orebrioniversitet•基于GNSS的定位panagiotispapapadimitratos•robii forofiwiew, jounirantakokko,FOI•爱立信的无线电点系统(RDS)Clarag´omezbl´azquez/Robertocastrosundin,爱立信15:00咖啡休息15:20 II
在俄罗斯联邦中自治导航,全球海上运输的含义几乎不能被高估。创新,数字化以及海上运输的进一步改善是对韧性,生态友好和可持续运输的重要发展策略。自主导航是海上运输发展策略中的技术之一。到目前为止,自动运输技术是许多国家海上运输的重要方向之一,例如挪威,大韩民国,日本,丹麦,德国,俄罗斯联邦等。已经审查了其大多数国际公约,以确定他们是否准备好建立新的船舶运营和控制模式。虽然国际海事组织正在处理《海事自主地表船安全法典》(Mass Code)的制定,但几个国家已经在其水域启动了自动运输项目。在俄罗斯,自自动运输项目自2019年以来正在开发和实施。通常,该技术本身是安装在船上的设备和软件,该设备和软件允许从远程操作中心执行船舶控制,监视和操作。现在这两个容器都以远程操作模式进行操作。自2023年11月以来,这些船只一直从事商业试验行动,每艘轮渡都达到了1,500小时的远程操作。该技术由几个模块组成,例如自动导航系统收集和分析环境,使船沿特定的路线保持自动决策;光学监视和分析系统检测和识别周围物体并传输有关它们的数据,远程引擎和技术监控;遥控站,其他一些。在自主导航项目中,建造了2021年的两个新的Ro-Rro渡轮元帅Rokossovsky,而General Chernyakhovsky拥有2022年的建筑,配备了自主导航设备,并配备了专用的远程操作中心,已在Saint-Petersburg港口建造。渡轮元帅Rokossovsky和Chernyakhovsky将军(主要维度为:长度为:总长度 - 200 m,Beam - 27 M,Deadweight - 11900,Draft - Draft - 6月 - 6 h,主发动机 - 主发动机 - 2х6000kW)在巴罗的海海,在Baltic Sea,在Ust-Luga - Baltiysk的518 nautical nautical nautical Miles。2023年9月,两辆渡轮,圣彼得堡远程运营中心均由俄罗斯海上航运登记册(RS)认证,并收到了ROC大规模合规性声明。这两艘船只还通过RS认证为RC MC -MC DS自治类别的船只(海上遥控器和手动控制,并在狭窄的海峡和港口入口上做出了支持)。由于远程操作需要船上和远程运营中心的员工的一些专门技能和知识,因此俄罗斯的几家公司参与自主导航项目已经开发了自动导航模拟器。
导航定义性能和功能的进步使得空域设计、最小间隔、航路间距、机场通道、程序设计和空中交通管理发生了变化。PBN 提供了适用于一种或多种空域(终端、航路和远程/海洋)的导航规范列表,并且只是空域概念的几个推动因素(监视、通信和空中交通管理)之一。使用 PBN 将提高进近的可靠性和可预测性,从而改善机场可达性。与对 ANS 的所有更改一样,PBN 将在可行的情况下基于积极的商业案例实施。