视觉和语言导航(VLN)任务涉及使用语言命令导航移动性,并在开发自动移动性的接口中应用。在这种情况下,自然的人类交流还构成了手势和凝视等非语言提示。这些手势引导的指示已在人类机器人的互动系统中进行了探索,以有效相互作用,特别是在对象引用表达式中。ever,在户外VLN任务中应对基于手势的表达式的著名差距。为了解决这个问题,我们介绍了一个新颖的数据集,用于带有示范表达式的手势引导的户外VLN指令,并重点介绍了复杂的指令,以重新引导命令输入方式之间进行多跳的推理。此外,我们的工作还包括对收集数据的全面分析以及针对现有数据集的比较评估。