I. 引言本指南旨在描述 FDA 对 CDER 和 CBER 监管的抗癌药物或生物制品 2 的临床试验设计的建议,这些建议旨在支持产品标签,描述中枢神经系统 (CNS) 转移患者的抗肿瘤活性,这些转移患者源自中枢神经系统 (CNS) 以外的实体瘤。FDA 目前关于将脑转移患者纳入临床试验的想法在行业指南《癌症临床试验资格标准:脑转移》(2020 年 7 月)中有所涉及。3 本文件的内容不具有法律效力,也不旨在以任何方式约束公众,除非明确纳入合同。本文件仅旨在向公众说明法律规定的现有要求。除非引用特定的监管或法定要求,否则 FDA 指南文件(包括本指南)应仅被视为建议。FDA 指南中的“应该”一词的使用意味着建议或推荐某事,但不要求某事。II.背景 最常转移到中枢神经系统的实体肿瘤是小细胞和非小细胞肺癌、乳腺癌、黑色素瘤和肾癌。4 中枢神经系统转移性疾病包括脑或脊髓的实质转移,以及涉及软脑膜、蛛网膜下腔软脑膜和脑脊液 (CSF) 的软脑膜疾病 (LMD)。LMD 可能表现为
摘要——计算智能算法目前能够处理简单的认知过程,但与人脑从少数样本中学习或分析未明确定义的问题的能力相比仍然效率低下。泛化和决策过程通常需要一个不确定性模型,该模型依赖于概率方法应用于决策选项。因此,此类认知功能模型通常与强化学习相互作用以简化复杂问题。决策者需要从可用的决策选项中进行选择,以确保决策者的选择是理性的。他们最大化预期的主观整体效用,该效用由不同状态下的结果给出,并根据对这些状态发生的主观信念加权。信念由概率捕获,并使用贝叶斯定律纳入新信息。本文描述的模糊模型提出了一种不同的方法——它们可以作为一系列新方法的出发点,从而实现更有效、神经生物学上更可靠的大脑模拟,这些方法基于模糊逻辑技术,并且被证明在基础科学和应用科学中都很有用。所提出的方法为理解上述过程提供了宝贵的见解,以描述性、基于模糊的方式进行,而无需进行复杂的分析。
1 德国慕尼黑工业大学医学院内科 III;2 德国慕尼黑工业大学医学院神经放射学系;3 德国柏林夏里特医学院血液学、肿瘤学和肿瘤免疫学系(本杰明富兰克林校区);4 德国慕尼黑工业大学医学院核医学系;5 德国慕尼黑工业大学病理学研究所;6 德国柏林健康研究所 (BIH);7 德国维尔茨堡大学医院核医学系;8 德国奥格斯堡大学医院核医学系;9 德国雷根斯堡大学医院内科 III; 10 德国雷根斯堡大学医院核医学系;11 德国科隆大学医学院神经病理学研究所、科隆大学医院;12 德国慕尼黑工业大学药物放射化学研究所;13 德国慕尼黑工业大学信息学系;14 德国柏林马克斯·德尔布吕克分子医学中心;15 德国海德堡德国癌症研究中心和德国癌症联盟
美国华盛顿大学,圣路易斯医学院,密苏里州圣路易斯医学院,美国63110,美国2,美国2号华盛顿大学,华盛顿大学,圣路易斯医学院,密苏里州圣路易斯医学院,密苏里州63110,美国3美国医学系,圣路易斯医学院华盛顿大学,圣路易斯学校,圣路易斯学校463110,美国463110,卢伊斯,圣路易斯,洛伊斯,洛伊斯,卢伊斯,圣路易斯43110,洛伊斯,洛伊斯,美国463110,卢伊斯。 63110,美国5宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚大学,费城研究所和佩雷尔曼医学院的儿童医院。 6板条疾病支持,研究与倡导基金会(US),P.O。 Box 30049 Gahanna,OH 43230,美国。 7麦克拉克兰大街74号,雪莉海滩2261澳大利亚麦克拉克兰大街74号巴顿疾病支持与研究协会。 8华盛顿大学神经病学系,圣路易斯医学院,圣路易斯,密苏里州63110,美国美国华盛顿大学,圣路易斯医学院,密苏里州圣路易斯医学院,美国63110,美国2,美国2号华盛顿大学,华盛顿大学,圣路易斯医学院,密苏里州圣路易斯医学院,密苏里州63110,美国3美国医学系,圣路易斯医学院华盛顿大学,圣路易斯学校,圣路易斯学校463110,美国463110,卢伊斯,圣路易斯,洛伊斯,洛伊斯,卢伊斯,圣路易斯43110,洛伊斯,洛伊斯,美国463110,卢伊斯。 63110,美国5宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚大学,费城研究所和佩雷尔曼医学院的儿童医院。 6板条疾病支持,研究与倡导基金会(US),P.O。 Box 30049 Gahanna,OH 43230,美国。 7麦克拉克兰大街74号,雪莉海滩2261澳大利亚麦克拉克兰大街74号巴顿疾病支持与研究协会。 8华盛顿大学神经病学系,圣路易斯医学院,圣路易斯,密苏里州63110,美国美国华盛顿大学,圣路易斯医学院,密苏里州圣路易斯医学院,美国63110,美国2,美国2号华盛顿大学,华盛顿大学,圣路易斯医学院,密苏里州圣路易斯医学院,密苏里州63110,美国3美国医学系,圣路易斯医学院华盛顿大学,圣路易斯学校,圣路易斯学校463110,美国463110,卢伊斯,圣路易斯,洛伊斯,洛伊斯,卢伊斯,圣路易斯43110,洛伊斯,洛伊斯,美国463110,卢伊斯。 63110,美国5宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚大学,费城研究所和佩雷尔曼医学院的儿童医院。 6板条疾病支持,研究与倡导基金会(US),P.O。 Box 30049 Gahanna,OH 43230,美国。 7麦克拉克兰大街74号,雪莉海滩2261澳大利亚麦克拉克兰大街74号巴顿疾病支持与研究协会。 8华盛顿大学神经病学系,圣路易斯医学院,圣路易斯,密苏里州63110,美国美国华盛顿大学,圣路易斯医学院,密苏里州圣路易斯医学院,美国63110,美国2,美国2号华盛顿大学,华盛顿大学,圣路易斯医学院,密苏里州圣路易斯医学院,密苏里州63110,美国3美国医学系,圣路易斯医学院华盛顿大学,圣路易斯学校,圣路易斯学校463110,美国463110,卢伊斯,圣路易斯,洛伊斯,洛伊斯,卢伊斯,圣路易斯43110,洛伊斯,洛伊斯,美国463110,卢伊斯。 63110,美国5宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚大学,费城研究所和佩雷尔曼医学院的儿童医院。 6板条疾病支持,研究与倡导基金会(US),P.O。 Box 30049 Gahanna,OH 43230,美国。 7麦克拉克兰大街74号,雪莉海滩2261澳大利亚麦克拉克兰大街74号巴顿疾病支持与研究协会。 8华盛顿大学神经病学系,圣路易斯医学院,圣路易斯,密苏里州63110,美国美国华盛顿大学,圣路易斯医学院,密苏里州圣路易斯医学院,美国63110,美国2,美国2号华盛顿大学,华盛顿大学,圣路易斯医学院,密苏里州圣路易斯医学院,密苏里州63110,美国3美国医学系,圣路易斯医学院华盛顿大学,圣路易斯学校,圣路易斯学校463110,美国463110,卢伊斯,圣路易斯,洛伊斯,洛伊斯,卢伊斯,圣路易斯43110,洛伊斯,洛伊斯,美国463110,卢伊斯。 63110,美国5宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚大学,费城研究所和佩雷尔曼医学院的儿童医院。6板条疾病支持,研究与倡导基金会(US),P.O。Box 30049 Gahanna,OH 43230,美国。 7麦克拉克兰大街74号,雪莉海滩2261澳大利亚麦克拉克兰大街74号巴顿疾病支持与研究协会。 8华盛顿大学神经病学系,圣路易斯医学院,圣路易斯,密苏里州63110,美国Box 30049 Gahanna,OH 43230,美国。7麦克拉克兰大街74号,雪莉海滩2261澳大利亚麦克拉克兰大街74号巴顿疾病支持与研究协会。8华盛顿大学神经病学系,圣路易斯医学院,圣路易斯,密苏里州63110,美国8华盛顿大学神经病学系,圣路易斯医学院,圣路易斯,密苏里州63110,美国
近年来,人工智能(AI)经历了显着的进步,在许多领域都产生了重大影响。一个特别引起关注并见证了实质性进步的领域是将其整合到神经系统的领域中。本文提供了对周围神经系统中AI的应用的全面检查,特别关注周围神经系统疾病的AI增强诊断,AI驱动的疼痛管理,神经假体的进步以及神经网络模型的发展。通过阐明这些方面,我们揭示了革命性医疗干预和增强人类能力的新兴机会,从而为AI成为神经系统界面不可或缺的未来的未来铺平了道路。
二硫代普及病是一种病理过程,在表达高水平SLC7A11的细胞中NADPH缺乏和过量的二硫键条件下发生。此过程是由葡萄糖剥夺引起的二硫应激引起的,并首先由癌症研究人员描述。氧化应激是中枢神经系统(CNS)的一种假设的机制,而二硫应激是一种特定的氧化应激类型。蛋白质与二硫化二硫酸二硫酸二硫酸菌和代谢途径有关的蛋白质与CNS疾病(神经退行性疾病,神经瘤和缺血性中风)显着相关。但是,负责此相关性的具体机制仍然未知。本综述概述了有关二硫代菌病发病机理的原始元素,遗传因素和信号蛋白的当前知识。它表明,硫代代谢和二硫应激的破坏在中枢神经系统疾病中起着关键作用,这与二硫代基因的潜在作用有关。我们还总结了与二硫酸二硫代菌有关的药物,并突出了治疗中枢神经系统疾病的潜在治疗策略。此外,本文提出了可检验的假设,这可能是治疗中枢神经系统疾病的有希望的靶标。
图1:肠神经元和神经胶质的微生物依赖性维持。(a)在稳态(左)(左)和治疗后五天(右)免疫染色(右)的小鼠卵形丛的共聚焦显微镜图像,用于ANNA1和SOX10。比例尺,50μm。(b)用水或抗生素处理的小鼠的神经元(ANNA1)和膜内神经胶质(SOX10)的定量五天(n = 7)。(c)抗生素治疗后用内部C57BL/6 SPF小鼠进行粪便菌群转移(FMT)实验的示意图。(d)在整个实验(ABX)中用抗生素治疗的小鼠或在抗生素治疗后从SPF小鼠中接受抗生素的小鼠的神经元(ANNA1)和临时胶质神经胶质(SOX10)。FMT后7天分析小鼠(n = 11 ABX,n = 13 fmt)。灰色阴影线指示内部C57BL/6小鼠稳态处的单元格数范围。(e)用ABX或接受FMT处理的SPF小鼠的肠道传输时间测量(n = 10 ABX,n = 11 FMT)。小鼠。灰色阴影线表示稳态处的基线传输时间(n = 10)。数据来自两个独立的实验。(f)抗生素治疗后杰克逊C57BL/6J小鼠的粪便转移实验的示意图。(g)单独用ABX治疗的C57BL/6J小鼠的神经元和神经胶质神经胶质的定量或从失调或SPF小鼠中接受FMT的神经元(n = 5)。小鼠。所有数据均表示为平均值±SEM。(h)沙门氏菌SPIB感染后,杰克逊C57BL/6J小鼠中粪便转移实验的示意图表示。(i)仅用ABX治疗的C57BL/6J小鼠的神经元和神经胶质神经胶质的定量,或从失调或SPF小鼠接受FMT(神经元,n = 7 = 7失菌率,N = 9 SPF; GliA n = 9 spf; GliA n = 4 = 4 = 4 spf)。灰色阴影线指示C57BL/6J小鼠G和i中C57BL/6J小鼠中的细胞数范围。一个未配对的两尾学生的t检验用于面板B,D,E和i。一个单向方差分析进行了多个假设检验,用于面板g。所有数据均从回肠myenteric丛中获得。数据来自至少两个独立的实验,除了面板i中的胶质定量。
急性和慢性病变中的衰老神经系统称为神经退行性疾病。证明了原始癌基bcl-2的过表达可保护神经元免受天然细胞死亡的影响,并免受各种病理损伤的侵害,这表明Bcl-2家族蛋白质对神经元死亡的控制对于发育和疾病是常见的(Sadoul等,1994)。这些发现表明,模仿Bcl-2的作用可能允许无法阻止不会防止初始损害或促进其修复的药物的神经元细胞死亡。这为治疗神经退行性疾病的新途径开辟了新的途径,这些疾病的病因剂以及细胞破坏的机制在很大程度上尚不清楚。本综述总结了结果,证明了Bcl-2家族成员在控制神经元死亡中的作用,并讨论了Bcl-2样蛋白在发育以及急性和慢性疾病中可能具有的作用。
近年来,肠道菌群与中枢神经系统 (CNS) 发育之间的关联引起了广泛的研究关注。有证据表明,CNS 和肠道菌群通过脑肠轴进行双向交流。作为一个长期而复杂的过程,CNS 发育极易受到内源性和外源性因素的影响。肠道菌群通过调节神经发生、髓鞘形成、神经胶质细胞功能、突触修剪和血脑屏障通透性来影响 CNS,并与各种 CNS 疾病有关。本综述概述了肠道菌群与 CNS 发育阶段(产前和产后)之间的关系,强调了肠道微生物的不可或缺的作用。此外,本综述还探讨了肠道菌群在神经发育障碍(如自闭症谱系障碍、雷特综合征和安格曼综合征)中的影响,为早期发现、及时干预和创新治疗提供了见解。
抽象的选择和执行适合上下文的行为是由整个大脑中神经回路的综合作用控制的。然而,如何在大脑区域进行活动如何协调,以及神经系统结构如何这些功能相互作用,仍然是开放的问题。最近的技术进步使得构建神经系统结构和功能的大脑范围图,例如大脑活动图,连接组和细胞地图集是可行的。在这里,我们回顾了该领域的最新进展,重点是秀丽隐杆线虫和D. Melanogaster,因为最近的工作已经产生了这些神经系统的全球地图。我们还描述了在特定网络的研究中阐明的神经回路基序,这些神经基序突出了必须捕获的复杂性,以构建全脑功能的准确模型。