,$- $)“$ $'”。 ")-%,$-$$''/'"'/$$/$'$'$$"!$/"))"")"-%*""')/$"$""-/"-$$%,$)$)-""!! - " $ " ) - $ ) %,$ ! - " - $ " / ' " - - / ' $ % 0 $ "$ $ - / ' " / "$ $ / $ " $ ! / - $ $ - % ,$ $ -- " ' " $ ! - " ) / $ $ $ $ $ ! $ / $ %,$! ))! ) " ""$!-%,$)!$$/-$%*!!"-/"$!!"! 1 / )+2 * ' 3 $ 04 2*+ * ' $ $ ! +056 7! + 。 3 - 8%,$ - $“$!!”! $“$!-$!-”)! ) 8 ) - ' " ) - $ / " $ %
脑转移瘤 (BM)、胶质母细胞瘤和原发性中枢神经系统淋巴瘤 (PCNSL) 是成人中最常见的颅内肿瘤(分别为 17%、14.6% 和 1.9%)(1,2)。治疗方法和预后各不相同,准确的诊断对于指导治疗策略至关重要。目前的指南建议,对于 BM 和胶质母细胞瘤应进行最大限度的手术切除加放化疗治疗,对于 PCNSL 应进行甲氨蝶呤化疗加全脑放疗(3-6)。活检,尤其是立体定向活检,是诊断的金标准,但总体并发症发生率高达 13%(7)。此外,对于 BM 和胶质母细胞瘤患者,为了缓解症状而在术前使用类固醇可能会妨碍 PCNSL 的组织病理学诊断,导致更高的假阴性率(8)。常规磁共振成像 (MRI) 可协助术前诊断评估并指导治疗计划,但病变可能显示重叠的放射学特征。在 T1 加权钆增强 (T1Gd) 图像上,胶质母细胞瘤通常显示对比增强的周边边缘和类似于单发性 BM 的中央坏死,而 PCNSL 通常表现出均匀增强 ( 9 , 10 )。在非典型病例中,胶质母细胞瘤可能显示极少或没有坏死,而 PCNSL 可能显示模仿胶质母细胞瘤的中心坏死 ( 11 )。一些先进的 MRI 技术可以支持放射学评估,例如通过区分 PCNSL 的特征性脑血容量 (CBV) 减少和胶质母细胞瘤中经常报告的高 CBV ( 12 , 13 )。然而,可能会遇到罕见的富血管 PCNSL,即使使用先进的多参数成像,也会带来额外的诊断挑战。最后,先进的 MRI 协议需要更多的专业知识和费用,影响其全球适用性(14)。放射组学已被用于神经肿瘤学,通过分析纹理或手工制作的放射学特征进行诊断分类和预后预测(15)。然而,它需要冗长而细致的预处理步骤,如图像分割、手动特征选择和提取。最近,机器学习算法的引入显著提高了分类性能(16-18):深度学习方法,特别是深度神经网络(DNN),可以通过直接从放射学序列中提取信息来自动执行多项计算机视觉任务(19、20)。
摘要:有大量证据表明胆碱能系统功能障碍在许多中枢神经系统 (CNS) 疾病中起着重要作用。在过去的三十年中,毒蕈碱受体 (mAChR) 与各种病理有关,并且已成为药物设计工作的主要目标。然而,由于正构结合位点的序列同源性很高,许多候选药物的临床成功率有限。尽管在治疗外周病变方面取得了一些进展,但针对中枢神经系统病变对研究人员来说仍然具有挑战性。尽管如此,近年来在开发具有副作用有限的功能选择性正构和变构配体方面取得了重大进展,这些配体靶向 mAChR。本综述重点介绍了过去的努力,并重点介绍了药物设计的最新进展
体内基因工程最近显示出具有不断增长的疾病的新型有效治疗的巨大潜力,最近几种体内基因治疗产品的营销授权也见证了。体内基因工程既包括病毒载体介导的基因转移,也包括最近开发的基因组/表观基因组编辑策略,只要它们直接用于患者。在这里,我们首先回顾了商业可用或临床发育中最先进的体内基因疗法。然后,我们强调要克服的主要挑战,要全部和广泛利用体内基因疗法作为新药物,讨论了解决这些方法的一些方法,重点是将神经系统和肝脏作为范式实例。
历史上,胰岛β细胞一直被视为血糖的主要调节器,当胰岛素分泌无法补偿外周组织胰岛素抵抗时,就会导致 2 型糖尿病 (T2D)。然而,血糖也受胰岛素非依赖性机制的调节,而这些机制在 T2D 中失调。有证据表明,中枢神经系统 (CNS) 在胰岛素分泌与胰岛素敏感性变化的适应性耦合以及胰岛素非依赖性葡萄糖处置的调节中都发挥着作用,因此,中枢神经系统 (CNS) 已成为血糖稳态的基本参与者。在这里,我们回顾并扩展了一个整合模型,其中 CNS 与胰岛一起建立和维持防御的血糖水平。我们讨论了该模型对于理解正常血糖稳态和 T2D 发病机制的意义,并强调了可能恢复 T2D 患者正常血糖的集中靶向治疗方法。
I. 引言本指南旨在描述 FDA 对 CDER 和 CBER 监管的抗癌药物或生物制品 2 的临床试验设计的建议,这些建议旨在支持产品标签,描述中枢神经系统 (CNS) 转移患者的抗肿瘤活性,这些转移患者源自中枢神经系统 (CNS) 以外的实体瘤。FDA 目前关于将脑转移患者纳入临床试验的想法在行业指南《癌症临床试验资格标准:脑转移》(2020 年 7 月)中有所涉及。3 本文件的内容不具有法律效力,也不旨在以任何方式约束公众,除非明确纳入合同。本文件仅旨在向公众说明法律规定的现有要求。除非引用特定的监管或法定要求,否则 FDA 指南文件(包括本指南)应仅被视为建议。FDA 指南中的“应该”一词的使用意味着建议或推荐某事,但不要求某事。II.背景 最常转移到中枢神经系统的实体肿瘤是小细胞和非小细胞肺癌、乳腺癌、黑色素瘤和肾癌。4 中枢神经系统转移性疾病包括脑或脊髓的实质转移,以及涉及软脑膜、蛛网膜下腔软脑膜和脑脊液 (CSF) 的软脑膜疾病 (LMD)。LMD 可能表现为
神经胶质细胞(星形胶质细胞,少突胶质细胞和小胶质细胞)在中枢神经系统(CNS)的几个生理和病理过程中成为关键参与者。星形胶质细胞和少突胶质细胞不仅是释放营养因子或调节能量代谢的支持性细胞,而且还积极调节三方突触中的关键神经元过程和功能。小胶质细胞定义为提供免疫监测的CNS居民细胞;但是,它们还积极地有助于通过清除细胞碎片或调节突触发生和修剪来塑造神经元微环境。鉴于许多由神经胶质细胞协调的相互连接的过程,急性和慢性中枢神经系统不仅会造成神经元损害,而且还会触发复杂的多方面反应,包括神经素浮肿,包括神经蛋白流量肿瘤,这可以促进疾病进展和症状恶化,这并不奇怪。总体而言,这使胶质细胞成为治疗中枢神经系统疾病的靶向疗法的出色候选者。近年来,基因编辑技术的应用已重新设计了治疗遗传和与年龄有关的神经系统疾病的治疗策略。在这篇综述中,我们讨论了群集的定期间隔短的短膜重复序列(CRISPR)/CAS9基因编辑在神经退行性疾病治疗中,重点是开发基于病毒和纳米粒子的基于病毒和纳米粒子的递送方法,以开发用于体内的细胞靶标。
Tipalo 通用人工智能:具有人工神经系统的数字生物大脑 ________________________________________________________________________________________________________________________________________________ 智能水平
背景:中枢神经系统(CNS)肿瘤是在全球童年时期出现的一种恶性肿瘤。脂肪质量和肥胖相关(FTO)酶,最初被鉴定为肥胖相关蛋白,也是癌症的易感基因。然而,FTO基因单核苷酸多态性(SNP)对中枢神经系统肿瘤风险的诱发作用尚不清楚。方法:本文中,我们基因分型了314例CNS肿瘤患者和380位来自三家医院的健康对照样本,以探索FTO基因SNP是否影响CNS肿瘤风险。Taqman SNP基因分型测定法用于基因分型。的比值比(ORS)和95%的CON FICENTASS(CIS)(CIS)应用于多项式逻辑回归,用于确定SNP的关联(RS1477196 G> A,RS9939609 T> A,RS7206790 C> G g> g,以及RS80477395395的风险cen in> g)in> g)in> g) 结果:我们无法在单位分析或组合分析中检测到FTO基因SNP和CNS肿瘤风险之间的显着关联。 与0-2风险基因型相比,具有3-4种风险基因型的携带者的Edepeny MOMA风险显着增加(调整后的OR = 1.94,95%CI = 1.11–3.37,p = 0.020)。 结论:我们的数据表明,FTO基因SNP不太可能对CNS肿瘤风险产生很大的影响,但可能影响较弱。 关键字:CNS肿瘤,风险,FTO,多态性,中文的比值比(ORS)和95%的CON FICENTASS(CIS)(CIS)应用于多项式逻辑回归,用于确定SNP的关联(RS1477196 G> A,RS9939609 T> A,RS7206790 C> G g> g,以及RS80477395395的风险cen in> g)in> g)in> g)结果:我们无法在单位分析或组合分析中检测到FTO基因SNP和CNS肿瘤风险之间的显着关联。与0-2风险基因型相比,具有3-4种风险基因型的携带者的Edepeny MOMA风险显着增加(调整后的OR = 1.94,95%CI = 1.11–3.37,p = 0.020)。结论:我们的数据表明,FTO基因SNP不太可能对CNS肿瘤风险产生很大的影响,但可能影响较弱。关键字:CNS肿瘤,风险,FTO,多态性,中文