摘要:(1) 背景:神经影像学鉴别胶质母细胞瘤、原发性中枢神经系统淋巴瘤 (PCNSL) 和单发性脑转移瘤 (BM) 是神经外科实践中的诊断和治疗挑战,它增加了治疗负担,并使患者面临与进一步侵入性手术和治疗延迟相关的额外风险。此外,现代诊断研究尚未完全解决非典型病例和重叠特征。本研究旨在验证先前设计并经过内部验证的 ResNet101 深度学习模型,以区分胶质母细胞瘤、PCNSL 和 BM。(2) 方法:我们招募了 126 名患者(胶质母细胞瘤:n = 64;PCNSL:n = 27;BM:n = 35),并在术前进行 T1Gd-MRI 扫描并进行组织病理学确认。对每个病变进行分割,并将所有感兴趣区域导出到 DICOM 数据集中。在先前对 121 名患者的研究中实施的预训练 ResNet101 深度神经网络模型在当前队列中进行了外部验证,以区分 T1Gd-MRI 扫描中的胶质母细胞瘤、PCNSL 和 BM。(3)结果:该模型在区分 PCNSL(AUC:0.73;95%CI:0.62-0.85)、胶质母细胞瘤(AUC:0.78;95%CI:0.71-0.87)方面实现了最佳分类性能,在区分 BM 方面具有中等至低水平的能力(AUC:0.63;95%CI:0.52-0.76)。通过回顾性审查选定患者群体的诊断报告,评估了专家神经放射科医生在常规和高级 MRI 成像方面的表现,发现 BM 的准确率 (89.69%) 更高,而 PCNSL (82.90%) 和胶质母细胞瘤 (84.09%) 的准确率并不低。 (4) 结论:我们调查了之前发布的深度学习模型是否可以推广到在不同机构招募的外部人群——这一验证证实了模型的一致性,并为未来在脑肿瘤分类中的临床应用奠定了基础。这种基于人工智能的模型可能是一种宝贵的教育资源,如果在前瞻性数据上大量复制,将帮助医生区分胶质母细胞瘤、PCNSL 和孤立性 BM,尤其是在资源有限的环境中。
摘要:(1)背景:胶质母细胞瘤,原发性中枢神经系统淋巴瘤(PCNSL)和孤立的脑转移(BM)的神经影像图是神经外科实践中的诊断性和性能挑战,是一种诊断和挑战,从而扩大了护理人员的负担,并扩大患者对额外的风险相关的侵害治疗和进一步的治疗方法和进一步的治疗方法。此外,现代诊断研究并未完全解决非典型情况和重叠功能。这项研究的目的是验证先前设计且内部验证的RESNET101深度学习模型,以区分胶质母细胞瘤,PCNSL和BMS。(2)方法:我们在术前T1GD-MRI扫描和组织病理学确认和术前招募了126例患者(N = 64; PCNSL:N = 27; BM:N = 35)。每个病变都进行了细分,并且所有感兴趣的区域均在DICOM数据集中导出。在先前的121例患者上实施的预先训练的RESNET101深神经网络模型在当前队列上进行了外部验证,以在T1GD-MRI扫描上区分胶质母细胞瘤,PCNSL和BMS。(3)结果:在区分PCNSL(AUC:0.73; 95%CI:0.62–0.85),胶质母细胞瘤(AUC:0.78; 95%CI:95%CI:0.71-0.87)和中度至低bms(AUC)(AUC:0.63)的能力(AUC:0.63)(AUC)(AUC:0.63)(AUC)(AUC:0.63)(AUC:0.63)(auc:95%)(auc:95%)(auc:95%),在区分PCNSL(AUC:0.73; 95%CI:0.62-0.85)方面具有最佳的块状性能性能,(3)结果。 通过回顾性评估所选患者队列的诊断报告评估,专家神经放射学家在常规加高级MR Imaging上的表现较高,BMS的准确性(89.69%)(89.69%)(89.69%)而不是PCNSL(82.90%)和Glioblas-Tomas(84.09%)(84.09%)。(3)结果。通过回顾性评估所选患者队列的诊断报告评估,专家神经放射学家在常规加高级MR Imaging上的表现较高,BMS的准确性(89.69%)(89.69%)(89.69%)而不是PCNSL(82.90%)和Glioblas-Tomas(84.09%)(84.09%)。(4)结论:我们研究了先前发表的深度学习模型是否可以推广到不同机构招募的外部人群 - 这种有效性证实了该模型的一致性,并为未来的脑肿瘤分类中的临床应用奠定了基础。这个基于人工智能的模型可能代表了有价值的教育资源,如果在很大程度上复制了预期数据,请帮助医生区分胶质母细胞瘤,PCNSL和孤立BMS,尤其是在资源有限的环境中。
一位科学家想测试长时间使用电脑是否会影响反应时间。科学家在相同的环境条件下测试了 10 个人的反应时间。然后这些人使用电脑三个小时。科学家再次测试他们的反应时间。请给出三种方法,科学家可以改进这种方法以确定长时间使用电脑是否会影响反应时间。
3。关闭:这是平静系统的一部分。它可以帮助我们生存,同时准备再次战斗或飞行。当我们的神经系统陷入过度驱动时,我们仍然无法逃脱,神经系统的保护性部分会关闭或冻结,这是一种自我保护的形式。这就像一只乌龟,头上躺在外壳上。看起来和感觉如何?•我们会感到麻木,头晕,绝望,被困,与世界断开•我们的眼睛看起来固定和间隔•降低了我们的心率,血压,血压,面部表情•面部表情•我们可能会感到恶心或呕吐•我们可能会感到疼痛或不疼痛•我们可能会感到疼痛或疼痛•我们可能难以在我们的喉咙周围张开脑袋或脑海中的脑袋降低•我们的大脑活动•我们的大脑活动减少。我们很难清楚地思考。•我们的身体姿势可能会在球中翻转或卷曲。
周围神经系统可以看作是一个庞大的神经元网络,该神经元网络向整个人体发出信号。实际上,如[1]所示,“周围神经系统(PNS)中的所有信息流沿轴突沿轴突传输,称为动作电位”。但是,由于神经损伤,可以预防这种神经信号或动作电位的普通传导。在这种情况下,将信息准确地传递到有机体内的预期目的地或部分。诚然,可以理解,物理疗法对在周围神经系统的受损部分中恢复正确的功能非常有帮助。然而,由于人体在人体内部的成就仍然很难形象化神经活动。模拟神经系统将提供一个平台,以可视化系统的工作原理以及受损的神经如何影响PN。的确,这项研究的目的是模拟一个虚拟网络,该虚拟网络显示了人类周围神经系统的一般拓扑,例如,模拟了人类手臂的神经结构和行为),该网络显示了如何将信号路由到其正确的目的地并展示其系统中的模拟生物神经损害。
摘要:在过去的几十年中,基于生化解剖学方法、显微镜和脑成像新技术以及所获图像的定量分析之间的协同作用,形态学研究获得了有关脑结构和功能的新证据。这一努力扩大了对脑结构的认识,将中枢神经系统描绘成一个巨大的细胞和区域网络,其中细胞间通讯过程不仅涉及神经元,还涉及其他细胞群,几乎决定了系统执行的整合功能的所有方面。本文描述了这些过程的主要特征。它们包括已确定的两种基本细胞间通讯模式(即布线和体积传输)以及调节细胞间信号传导的机制,例如共传递和变构受体-受体相互作用。这些特征也可能为开发治疗中枢神经系统疾病的新药理学方法开辟新的可能性。本文还将简要讨论这一方面,因为这可能对分子医学产生重大影响。
摘要:血脑屏障 (BBB) 维持中枢神经系统 (CNS) 的稳态并保护大脑免受循环血液中存在的有毒物质的侵害。然而,BBB 对药物的不渗透性是 CNS 药物开发的障碍,这阻碍了大多数治疗分子进入大脑。因此,科学家一直在努力开发安全有效的技术,以更高的靶向性和更低的脱靶副作用来促进药物渗透到 CNS。本综述将讨论人工纳米药物在 CNS 药物输送中的局限性以及使用天然细胞外囊泡 (EV) 作为治疗载体实现对 CNS 的靶向输送。关于使用 EV 进行 CNS 靶向药物输送的临床试验信息非常有限。因此,本综述还将简要介绍最近在外周神经系统中靶向药物输送的临床研究,以阐明 CNS 药物输送的潜在策略。已经实施了不同的前分离和后分离技术,以进一步利用和优化 EV 的天然特性。各种来源的 EV 也已应用于体外和体内中枢神经系统靶向药物输送的 EV 工程。本文将讨论这些研究在临床上的未来可行性。
1 tES 设备和提供剂量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....................................................................................................................................................................................................................................... 8 2.2 自粘式一体化电极....................................................................................................................................................................................................... 8 2.3 高清(HD)电极....................................................................................................................................................................................................... 8 2.3 高清电极....................................................................................................................................................................................................................... 8 2.4 高清电极....................................................................................................................................................................................................................... 8 . . . . . . 9 2.4 手持导体上的游离电解液. . . . . . . . . . . . . . . 11 2.5 导电橡胶电极上的游离糊剂. . . . . . . . . . . . . . . . 11 2.6 干电极. . . . . . . . . . . . . . . ....................................................................................................................................................................................................................................... 11 2.7 预盐化电极............................................................................................................................................................................................................................................................................................................................. 11 3 电极电阻............................................................................................................................................................................................................................................................................................................................................. 11 3 电极电阻.................................................................................................................................................................................................................................................................................................................... 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ... .................................................................................................................................................................................19 9 讨论:争议和未来方向....................................................................................................................................................................................................................................................................20 参考文献....................................................................................................................................................................................................................................................................... ... .... .... .... 21