1. Kalia LV, Lang AE。帕金森病。柳叶刀 2015;386:896-912。2. Giros B, Caron MG。多巴胺转运蛋白的分子表征。药理学趋势 1993;14:43-49。3. Mozley PD, Schneider JS, Acton PD 等。[99mTc]TRODAT-1 与帕金森病患者和健康志愿者中多巴胺转运蛋白的结合。核医学杂志 2000;41:584-9。4. Kish SJ, Shannak K, Hornykiewicz O。特发性帕金森病患者纹状体多巴胺损失模式不均匀。病理生理和临床意义。 N Engl J Med 1988;318(14):876-80。5. Brooks DJ。多巴胺转运蛋白的分子成像。Ageing Res Rev 2016;30:114-21。6. Seifert KD、Wiener JI。DaTscan 对运动障碍诊断和管理的影响:一项回顾性研究。Am J Neurodegener Dis 2013;2(1):29-34。7. Wullner U、Kaut O、deBoni L、Piston D、Schmitt I。帕金森病中的 DNA 甲基化。J Neurochem 2016;139(增刊 1):108–120。 8. Miranda-Morales E、Meier K、Sandoval-Carrillo A、Salas-Pacheco J、Vazquez-Cardenas P、Arias- Carrion O。DNA甲基化对帕金森病的影响。Front Mol Neurosci 2017;10:225。9. Dupont C、Armant R、Brenner AC。表观遗传学:定义、机制和临床视角。Stem Cell Res Ther 2016;27:351-7。10. Ai SX、Xu Q、Hu YC 等。散发性帕金森病患者血液中 SNCA 的低甲基化。J Neurol Sci 2014;337:123-128。11. Schmitt I、Kaut O、Khazneh H 等。 L-多巴在体内和体外增加帕金森病患者突触核蛋白的DNA甲基化。Mov Disord 2015;30:1794–801。12. De Mena L、Cardo LF、Coto E、Alvarez V。帕金森病患者和健康对照者的大脑中PARK2的DNA甲基化没有差异。Mov Disord 2013;28(14):2032–3。13. Coupland KG、Mellick GD、Silburn PA等。帕金森病患者群体中MAPT基因的DNA甲基化以及维生素E在体外的调节作用。Mov Disord 2014;2913:1606–14。 14. Cai Y, Liu S, Sothern RB, Xu S, Chan P. 健康和帕金森病患者总白细胞中时钟基因 Per1 和 Bmal1 的表达。欧洲神经学杂志 2010;17(4):550-4。15. Su X, Chu Y, Kordower JH 等。帕金森病中的 PGC-1α 启动子甲基化。PLoS One 2015;10(8),e0134087。16. Moore K, McKnight AJ, Craig D 等。帕金森病的表观基因组全关联研究。神经分子医学 2014;16(4):845-55。
[1] Murray CJL, Aravkin AY, Zheng P, et al.Global burden of 87 risk factors in 204 countries and territories, 1990 – 2019: a systematic analysis for the Global Burden of Disease Study 2019[J].Lancet, 2020, 396 (10258): 1223-1249.[2] 王增武 , 马志毅 , 薛素芳 , 等 .基层冠心病与缺血性脑卒中共患管理 专家共识 2022[J].中国心血管病研究 , 2022, 20(9): 772-793.[3] 王拥军 , 李子孝 , 谷鸿秋 , 等 .中国卒中报告 2020 (中文版) (1)[J].中 国卒中杂志 , 2022, 17(5): 433-447.[4] Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation[J].Lancet, 2011, 377(9778): 1693-1702.[5] Xing Y, Bai Y.A Review of Exercise-Induced Neuroplasticity in Ischemic Stroke: Pathology and Mechanisms[J].Mol Neurobiol, 2020, 57 (10): 4218-4231.[6] Guggisberg AG, Koch PJ, Hummel FC, et al.Brain networks and their relevance for stroke rehabilitation[J].Clin Neurophysiol, 2019, 130(7): 1098-1124.[7] Lutsep HL, Albers GW, Decrespigny A, et al.Clinical utility of diffusion-weighted magnetic resonance imaging in the assessment of ischemic stroke[J].Ann Neurol, 1997, 41(5): 574-580.[8] 于帆 , Arman Sha, 张苗 , 等 .人工智能在急性缺血性脑卒中影像的研 究进展 [J].中华老年心脑血管病杂志 , 2023, 25(3): 334-336.[9] 李华 , 郭春锋 , 高连荣 .FLAIR 及 DWI 序列在诊断脑血管周围间隙 中的价值 [J].医学影像学杂志 , 2015, 25(8): 1341-1343.[10] Scheldeman L, Wouters A, Dupont P, et al.Stroke, 2022, 53(5): 1665-1673.[11] Thomalla G, Simonsen CZ, Boutitie F, et al.MRI-Guided Thrombolysis for Stroke with Unknown Time of Onset[J].[15] 蔡建新 , 彭如臣 .扩散加权成像和流体且反转的恢复定量定量,以预测不明发作的缺血性中风中的易流性恢复不匹配的恢复不匹配状态[J]。《新英格兰医学杂志》,2018,379(7):611-622。[12] Legrand L,Turc G,Edilali M等。根据Flair血管高压不匹配而受益于血栓切除术后血运重建[J]。Eur Radiol,2019,29(10):5567-5576。[13] Xie Y,Oppenheim C,Guillemin F等。预处理病变量会影响临床结果和血栓切除术的功效[J]。Ann Neurol,2018,83(1):178-185。 [14] Raoult H,Lassalle MV,Parat B等。 基于DWI的算法可预测急性中风血栓切除术治疗的患者的残疾[J]。 Am J Neuroradiol,2020,41(2):274-279。 弥散张量磁共振成像方法概述[J]。 医学影像学杂,2007,17(10):1119-1122。 [16] Qiu A,Mori S,Miller MI。 扩散张量成像,用于理解早期生命中大脑发育[J]。 Ann Rev Psychol,2015,66:853-876。 [17] Corroenne R,Arthuis C,Kasprian G等。 胎儿大脑的扩散张量成像:有前途技术的原理,潜力和局限性[J]。 超声产科妇科,2022,60(4):470-476。 [18] Andica C,Kamagata K,Hatano T等。 源自扩散成像的退化性脑疾病的生物标志物[J]。 J Magn Reson Imaging,2020,52(6):1620-1636。 [19] Groisser BN,哥伦WA,Singhal AB等。 NeuroRehabil神经修复,2014,28(8):751-760。Ann Neurol,2018,83(1):178-185。[14] Raoult H,Lassalle MV,Parat B等。基于DWI的算法可预测急性中风血栓切除术治疗的患者的残疾[J]。Am J Neuroradiol,2020,41(2):274-279。弥散张量磁共振成像方法概述[J]。医学影像学杂,2007,17(10):1119-1122。[16] Qiu A,Mori S,Miller MI。扩散张量成像,用于理解早期生命中大脑发育[J]。Ann Rev Psychol,2015,66:853-876。 [17] Corroenne R,Arthuis C,Kasprian G等。 胎儿大脑的扩散张量成像:有前途技术的原理,潜力和局限性[J]。 超声产科妇科,2022,60(4):470-476。 [18] Andica C,Kamagata K,Hatano T等。 源自扩散成像的退化性脑疾病的生物标志物[J]。 J Magn Reson Imaging,2020,52(6):1620-1636。 [19] Groisser BN,哥伦WA,Singhal AB等。 NeuroRehabil神经修复,2014,28(8):751-760。Ann Rev Psychol,2015,66:853-876。[17] Corroenne R,Arthuis C,Kasprian G等。胎儿大脑的扩散张量成像:有前途技术的原理,潜力和局限性[J]。超声产科妇科,2022,60(4):470-476。[18] Andica C,Kamagata K,Hatano T等。源自扩散成像的退化性脑疾病的生物标志物[J]。J Magn Reson Imaging,2020,52(6):1620-1636。[19] Groisser BN,哥伦WA,Singhal AB等。NeuroRehabil神经修复,2014,28(8):751-760。皮质脊髓扩散异常[J]。[20] Kumar P,Kathuria P,Nair P等。使用扩散张量成像的亚急性缺血性卒中后上肢运动恢复的预测:系统评价和荟萃分析[J]。J Stroke,2016,18(1):50-59。[21] Soulard J,Huber C,Baillieul S等。运动道完整性预测步行恢复:亚急性中风中的扩散MRI研究[J]。神经病学,
无监督系统算法从互联网或任何其他来源(大数据)上即时可用的大量数据中学习。这只有通过新技术的发展才有可能,例如机器学习的一个分支——深度学习——产生的神经网络。通过深度学习,系统不仅能够创建,而且还能建立自己的关联模式,与人类的智力推理脱节。而这只能通过系统自身在多个层次上发展的一种非线性学习形式来实现——类似于人类大脑在其神经网络中发生的情况,其中有多个传导单元数据网络反馈。大多数语音识别、面部识别、翻译和语言识别软件
Engl J Med,2013,368:107-16 [4] Jin SC,Benitez BA,Karch CM等。trem2中的编码变体增加了阿尔茨海默氏病的风险。Hum Mol Genet,2014,23:5838-46 [5] Schwabe T,Srinivasan K,Rhinn H.移动范式:小胶质细胞在阿尔茨海默氏病中的核心作用。Neurobiol Dis,2020,143:104962 [6] Zhang Y,Chen K,Sloan SA等。大脑皮层的神经胶质,神经元和血管细胞的RNA测序转录组和剪接数据库。J Neurosci,2014,34:11929-47 [7] Lloyd AF,Miron Ve。小胶质细胞在中枢神经系统中的促估计性特性。nat Rev Neurol,2019,15:447-58 [8] Butovsky O,Ziv Y,Schwartz A等。由IL-4或IFN-γ激活的小胶质细胞差异地诱导了成人茎/祖细胞的神经发生和寡构成。mol Cell Neurosci,2006,31:149-60 [9] Ulland TK,Song Wm,Huang SC等。TREM2在阿尔茨海默氏病中保持小胶质细胞代谢适应性。Cell,2017,170:649-63.E13 [10] Daws MR,Lanier LL,Seaman WE等。新型小鼠髓样DAP12-相关受体家族的克隆和表征。EUR J Immunol,2001,31:783-91 [11] Dean HB,Roberson ED,Song Y. Trem2中与神经退行性疾病相关的变体破坏了免疫球蛋白领域的顶端配体结合区域。前神经,2019,10:1252-67 [12] Sasaki A,Kakita A,Yoshida K等。小胶质细胞DAP12和TREM2基因在NASU-Hakola病中的可变表达。神经遗传学,2015,16:265-76 [13] Jay TR,Von Saucken VE,Landreth GE。trem2在神经退行性疾病中。mol Neurodegener,2017,12:56-89 [14] Forabosco P,Ramasamy A,Trabzuni D等。通过人脑基因表达数据网络分析对TREM2生物学的见解。Neurobiol老化,2013,34:2699-714 [15] Schlepckow K,Kleinberger G,Fukumori A等。与阿尔茨海默氏症相关的trem2变体发生在亚当裂解位点,并效果脱落和吞噬功能。embo mol Med,2017,9:1356-65 [16] Bouchon A,Dietrich J,ColonnaM。尖锐边缘:炎症反应可以由Trem-1触发,Trem-1是一种在中性粒细胞和单核细胞上表达的新型受体。J Immunol,2000,164:4991-5 [17] Del-Aguila JL,Benitez BA,Li Z等。 TREM2脑转录本特异性研究和TREM2突变载体。 mol Neurodegener,2019,14:18-31 [18] Lanier LL,Corliss BC,Wu J等。 带有基于酪氨酸的活化基序的免疫受体DAP12参与激活NK细胞。 自然,1998,391:703-7 [19] Thornton P,Sevalle J,Deery MJ等。 trem2在H157-S158键上通过裂解脱落,以加速阿尔茨海默氏病相关的H157Y变体。 Embo Mol Med,2017,9:1366-78 [20] Piccio L,Buonsanti C,Cella M等。 识别J Immunol,2000,164:4991-5 [17] Del-Aguila JL,Benitez BA,Li Z等。TREM2脑转录本特异性研究和TREM2突变载体。mol Neurodegener,2019,14:18-31 [18] Lanier LL,Corliss BC,Wu J等。带有基于酪氨酸的活化基序的免疫受体DAP12参与激活NK细胞。自然,1998,391:703-7 [19] Thornton P,Sevalle J,Deery MJ等。trem2在H157-S158键上通过裂解脱落,以加速阿尔茨海默氏病相关的H157Y变体。Embo Mol Med,2017,9:1366-78 [20] Piccio L,Buonsanti C,Cella M等。识别
Address: São Luís, Maranhão, Brazil E-mail: manoelaarouche10@gmail.com Abstract Vago nerve stimulation (VNS) is a neuromodulatory technique that uses electrical impulses to stimulate the tenth cranial nerve, regulating involuntary functions and being applied to the treatment of various neurological and psychiatric conditions. 本研究回顾了最新的VNS进展,重点是其在耐药性癫痫,VC康复后,情绪障碍和认知功能障碍中的应用。 该方法涉及对2016年至2024年之间发表的研究的定性系统回顾,该研究使用了PubMed,Medline,Cochrane Library和Burry数据库中的特定描述符。 分析包括7项研究,以解决侵入性刺激和无创刺激。 结果表明,VNS在降低癫痫发作方面具有证明有效性,尤其是在耐药性癫痫病例中对神经可塑性的影响,从而促进了VC后运动后的运动恢复。 此外,VNS已证明可以改善对治疗和焦虑症的耐药性症状,尤其是诸如经皮刺激之类的非侵入性形式。 研究还表明,VNs抑制神经造成的可能性并改善了血管认知障碍患者的认知功能。 尽管有进步,但自定义刺激参数和对周围效应的完全了解仍然需要进一步研究。 vns被证明是多种疾病的有希望的干预措施,具有临床实践的潜力。Address: São Luís, Maranhão, Brazil E-mail: manoelaarouche10@gmail.com Abstract Vago nerve stimulation (VNS) is a neuromodulatory technique that uses electrical impulses to stimulate the tenth cranial nerve, regulating involuntary functions and being applied to the treatment of various neurological and psychiatric conditions.本研究回顾了最新的VNS进展,重点是其在耐药性癫痫,VC康复后,情绪障碍和认知功能障碍中的应用。该方法涉及对2016年至2024年之间发表的研究的定性系统回顾,该研究使用了PubMed,Medline,Cochrane Library和Burry数据库中的特定描述符。分析包括7项研究,以解决侵入性刺激和无创刺激。结果表明,VNS在降低癫痫发作方面具有证明有效性,尤其是在耐药性癫痫病例中对神经可塑性的影响,从而促进了VC后运动后的运动恢复。此外,VNS已证明可以改善对治疗和焦虑症的耐药性症状,尤其是诸如经皮刺激之类的非侵入性形式。研究还表明,VNs抑制神经造成的可能性并改善了血管认知障碍患者的认知功能。尽管有进步,但自定义刺激参数和对周围效应的完全了解仍然需要进一步研究。vns被证明是多种疾病的有希望的干预措施,具有临床实践的潜力。从这个意义上讲,该研究增强了VNS作为多模式治疗工具的相关性,重点是其对神经和精神病疾病的影响。关键字:迷走神经刺激,抗性癫痫,VC后康复,情绪障碍,神经可塑性。抽象的迷走神经刺激(VNS)是一种神经调节技术,它使用电脉冲来刺激第十个颅神经,调节非自愿功能并应用于严重神经和精神病的治疗中。这项研究回顾了VN的最新进展,重点介绍了其在抵抗癫痫,中风后康复,情绪障碍和认知功能障碍中的应用。该方法涉及对2016年至2024年之间发表的研究的系统定性综述,使用PubMed中的特定描述符,
尽管使用了“高效率”疾病改良疗法,疾病活动和不同免疫介导的神经系统疾病的临床进展仍在某些患者中,导致残疾积累,社会和心理健康,以及对患者和社会的高经济成本。尽管自体造血干细胞移植是一种有效的治疗方式,但它是一种基于强化化学疗法的治疗,具有一系列短期和长期副作用。嵌合抗原受体T细胞疗法(CAR-T)彻底改变了B细胞和其他血液恶性肿瘤的治疗,从而赋予了难治性疾病的长期缓解。然而,这种治疗的毒性,尤其是细胞因子释放综合征和免疫效应物细胞相关的神经毒性综合征,生产的复杂性需要在治疗中心进行高水平的专业化。在免疫介导的B细胞驱动疾病中,CAR-T疗法的早期试验,例如全身性红斑狼疮,神经司肌炎谱谱系障碍和肌无力的GRAVIS,显示出巨大的临床反应,且少数不良事件。基于其他免疫介导的神经系统疾病的常见生理病理学,CAR-T疗法,包括多发性硬化症,慢性炎症性多律性多栏病变,自身免疫性脑炎和僵硬的人综合征,可能是患者的有效选择,避免了长期免疫抑制药物的需求。与自体造血干细胞移植相比,它可能被证明是一种更具选择性的免疫方法,可能会增加效率和较低的不良事件。在这篇综述中,我们介绍了在这种情况下使用CAR-T的最新技术和未来方向。Ann Neurol 2024; 00:1 - 12
目的:随机临床试验表明,有氧运动可减轻帕金森病的运动症状进展,但其潜在的神经机制尚不清楚。在本文中,我们研究了有氧运动如何影响与疾病相关的皮质纹状体感觉运动网络的功能和结构变化,该网络与帕金森病的运动缺陷的出现有关。此外,我们还探讨了有氧运动对黑质组织完整性以及行为和大脑认知控制指标的影响。方法:Park-in-Shape 试验是一项单中心、双盲随机对照试验,130 名帕金森病患者被随机分配(1:1 比例)接受有氧运动(固定家用训练器)或拉伸(主动控制)干预(持续时间 = 6 个月)。本次试验中未选定的一个子集(运动,n = 25;拉伸,n = 31)在基线和 6 个月的随访中接受了静息态功能和结构磁共振成像(MRI)以及眼球运动认知控制任务(前扫视和反扫视)。结果:有氧运动(而非拉伸)导致前壳核与感觉运动皮质之间的功能连接相对于后壳核增强。在行为上,有氧运动也改善了认知控制。此外,有氧运动增加了右额顶叶网络的功能连接,与体能改善成正比,并且减少了全脑萎缩。解读:MRI、临床和行为结果均趋向于以下结论:有氧运动可稳定皮质纹状体感觉运动网络中的疾病进展并提高认知能力。神经病学年鉴 2022;91:203 – 216
电子邮件:sandra.fernandes@ceub.edu.br 摘要 自闭症谱系障碍 (ASD) 是一种神经系统疾病,其特征是发育变化,例如沟通受限、社交互动和刻板行为。其病因尚不十分清楚,但已知其原因是多方面的。证据表明,受怀孕期间环境因素的影响,ASD 风险有 40-50% 的变化。因此,母亲在怀孕期间经历过压力事件的孩子患ASD的几率更高,这与遗传倾向有关,是支持这一理论的重要系数。旨在分析妊娠期压力因素的发生率、患病率及其与ASD发展的关系。这是一项探索性和回顾性研究;数据是通过技术调查程序收集的。研究结果显示,除了与怀孕次数及家庭中确诊的自闭症病例有关外,自闭症患病率还随母亲和父亲年龄的增加而增加。观察到影响
参考文献1。Szabo SM等。orphanet j Rare。2021; 16:237。2。yiu em,Kornberg AJ。J Paediatr儿童健康。2015; 51:759-64。 3。 Schwartz CE等。 j患者代表结果。 2021; 5:124。 4。 Ammann-Schnell L等。 orphanet j Rare。 2021; 16:211。 5。 delandistrogene moxeparvovec [处方信息]。 马萨诸塞州剑桥:Sarepta Therapeutics,Inc; 2023。 6。https://mohap.gov.ae/ en/services/nocended-medical-product-directory [2024年3月7日访问]。 7。 卡塔尔公共卫生部更新部,2023年9月27日。 文件中的Roche数据。 2023年10月。 8。https://www.fda.gov/news-events/press-announcements/fda-批准 - first-gene-therapy-therapy-warteatment-cneathment-pateriations-patients-duchenne-muscular-muscular- dismtrostrophrophy-访问[2024年2月访问]。 9。 Broomfield J等。 神经病学。 2021; 97:E2304-14。 10。 Passamano L等。 Acta Myol。 2012; 31:121-5。 11。 Paramsothy P等。 神经肌肉疾病。 2022; 32:468-76。 12。 Klimchak AC等。 J Mark Access健康政策。 2023; 11:2216518。 13。 Soelaeman RH等。 肌肉神经。 2021; 64:717-25。 14。 麦当劳CM等。 柳叶刀。 2018; 391:451-61。 15。 Osterman M等。 natl重要统计代表。 16。2015; 51:759-64。3。Schwartz CE等。j患者代表结果。2021; 5:124。4。Ammann-Schnell L等。orphanet j Rare。2021; 16:211。5。delandistrogene moxeparvovec [处方信息]。马萨诸塞州剑桥:Sarepta Therapeutics,Inc; 2023。 6。https://mohap.gov.ae/ en/services/nocended-medical-product-directory [2024年3月7日访问]。 7。 卡塔尔公共卫生部更新部,2023年9月27日。 文件中的Roche数据。 2023年10月。 8。https://www.fda.gov/news-events/press-announcements/fda-批准 - first-gene-therapy-therapy-warteatment-cneathment-pateriations-patients-duchenne-muscular-muscular- dismtrostrophrophy-访问[2024年2月访问]。 9。 Broomfield J等。 神经病学。 2021; 97:E2304-14。 10。 Passamano L等。 Acta Myol。 2012; 31:121-5。 11。 Paramsothy P等。 神经肌肉疾病。 2022; 32:468-76。 12。 Klimchak AC等。 J Mark Access健康政策。 2023; 11:2216518。 13。 Soelaeman RH等。 肌肉神经。 2021; 64:717-25。 14。 麦当劳CM等。 柳叶刀。 2018; 391:451-61。 15。 Osterman M等。 natl重要统计代表。 16。马萨诸塞州剑桥:Sarepta Therapeutics,Inc; 2023。6。https://mohap.gov.ae/ en/services/nocended-medical-product-directory [2024年3月7日访问]。7。卡塔尔公共卫生部更新部,2023年9月27日。文件中的Roche数据。2023年10月。8。https://www.fda.gov/news-events/press-announcements/fda-批准 - first-gene-therapy-therapy-warteatment-cneathment-pateriations-patients-duchenne-muscular-muscular- dismtrostrophrophy-访问[2024年2月访问]。9。Broomfield J等。 神经病学。 2021; 97:E2304-14。 10。 Passamano L等。 Acta Myol。 2012; 31:121-5。 11。 Paramsothy P等。 神经肌肉疾病。 2022; 32:468-76。 12。 Klimchak AC等。 J Mark Access健康政策。 2023; 11:2216518。 13。 Soelaeman RH等。 肌肉神经。 2021; 64:717-25。 14。 麦当劳CM等。 柳叶刀。 2018; 391:451-61。 15。 Osterman M等。 natl重要统计代表。 16。Broomfield J等。神经病学。2021; 97:E2304-14。 10。 Passamano L等。 Acta Myol。 2012; 31:121-5。 11。 Paramsothy P等。 神经肌肉疾病。 2022; 32:468-76。 12。 Klimchak AC等。 J Mark Access健康政策。 2023; 11:2216518。 13。 Soelaeman RH等。 肌肉神经。 2021; 64:717-25。 14。 麦当劳CM等。 柳叶刀。 2018; 391:451-61。 15。 Osterman M等。 natl重要统计代表。 16。2021; 97:E2304-14。10。Passamano L等。Acta Myol。2012; 31:121-5。 11。 Paramsothy P等。 神经肌肉疾病。 2022; 32:468-76。 12。 Klimchak AC等。 J Mark Access健康政策。 2023; 11:2216518。 13。 Soelaeman RH等。 肌肉神经。 2021; 64:717-25。 14。 麦当劳CM等。 柳叶刀。 2018; 391:451-61。 15。 Osterman M等。 natl重要统计代表。 16。2012; 31:121-5。11。Paramsothy P等。神经肌肉疾病。2022; 32:468-76。12。Klimchak AC等。J Mark Access健康政策。 2023; 11:2216518。 13。 Soelaeman RH等。 肌肉神经。 2021; 64:717-25。 14。 麦当劳CM等。 柳叶刀。 2018; 391:451-61。 15。 Osterman M等。 natl重要统计代表。 16。J Mark Access健康政策。2023; 11:2216518。13。Soelaeman RH等。肌肉神经。2021; 64:717-25。14。麦当劳CM等。柳叶刀。2018; 391:451-61。15。Osterman M等。 natl重要统计代表。 16。Osterman M等。natl重要统计代表。16。2021; 70:1-50。soim a和al。J儿童神经2021; 36:1095-1