将人类行为与大脑结构联系起来:进一步的挑战和可能的解决方案Chen Song 1,*,Kristian Sandberg 2,Renate Rutiku 3和Ryota Kanai 4 1。加的夫大学脑研究成像中心,加的夫大学,加的夫,英国。2。功能整合神经科学中心,丹麦奥胡斯大学的奥尔胡斯大学。3。波兰克拉科夫的贾吉伦大学心理学研究所。4。Araya Inc.,日本东京。 *电子邮件:songc5@cardiff.ac.uk在及时的文章中,Genon及其同事回顾了MRI研究的最新发展,旨在将人类行为与大脑结构联系起来(Genon,S.,Eickhoff,S.B. &Kharabian,S。将大脑结构的个体变异与行为联系起来。 nat。 修订版 Neurosci。 23,307–318(2022))1。 他们认为,在过去的十年中,该领域目睹了研究发现的可复制性低,并且有效的大小减少。 他们指出采用多元方法是前进的一个有前途的道路。 我们认可他们有见地的建议,并想提请注意两个点,我们认为这代表了未来的关键挑战和可能的解决方案。 存在结构MRI信号与潜在的“真实”大脑结构之间的简单一对一关系。 MRI信号反映了体素内各种结构成分的混合贡献,其中一些成分以截然不同的方式影响大脑功能。 值得注意的是,正在进行一些有希望的发展来弥合这一差距。Araya Inc.,日本东京。*电子邮件:songc5@cardiff.ac.uk在及时的文章中,Genon及其同事回顾了MRI研究的最新发展,旨在将人类行为与大脑结构联系起来(Genon,S.,Eickhoff,S.B.&Kharabian,S。将大脑结构的个体变异与行为联系起来。nat。修订版Neurosci。23,307–318(2022))1。 他们认为,在过去的十年中,该领域目睹了研究发现的可复制性低,并且有效的大小减少。 他们指出采用多元方法是前进的一个有前途的道路。 我们认可他们有见地的建议,并想提请注意两个点,我们认为这代表了未来的关键挑战和可能的解决方案。 存在结构MRI信号与潜在的“真实”大脑结构之间的简单一对一关系。 MRI信号反映了体素内各种结构成分的混合贡献,其中一些成分以截然不同的方式影响大脑功能。 值得注意的是,正在进行一些有希望的发展来弥合这一差距。23,307–318(2022))1。在过去的十年中,该领域目睹了研究发现的可复制性低,并且有效的大小减少。他们指出采用多元方法是前进的一个有前途的道路。我们认可他们有见地的建议,并想提请注意两个点,我们认为这代表了未来的关键挑战和可能的解决方案。存在结构MRI信号与潜在的“真实”大脑结构之间的简单一对一关系。MRI信号反映了体素内各种结构成分的混合贡献,其中一些成分以截然不同的方式影响大脑功能。值得注意的是,正在进行一些有希望的发展来弥合这一差距。例如,定量T1 MRI信号的增加可能导致髓鞘降低或轴突直径增加2,3(图1A),这会影响相反方向的信号传导速度4。MRI信号和基础大脑结构之间的差距对大脑结构 - behaviour映射构成了巨大挑战。我们想突出两个这样的发展:多维和多模式MRI 5。通过获取多个结构性MRI信号,每个信号反映了不同的结构组件加权总和,这些技术可以分离并测量单个结构成分,例如髓磷脂水平6,轴突直径7和细胞形态8。这些措施在功能上更相关的大脑单位,并为机械见解提供了机会。对大脑结构的另一个挑战 - 行为映射是大脑结构与行为之间的众多关系。正如Genon及其同事所指出的1所指出的那样,该领域长期以来依赖于线性结构 - 行为关系的假设。然而,最近的研究引起了人们对这一假设的怀疑,而是指向多一对一的结构 - 行为关系,称为“多重可变性”。例如,在视觉性能和视觉皮质体积之间观察到U形关系,这表明视觉性能的降解可能是由于皮质厚度增加或皮质表面表面积9的降低而导致的(图1B)。同样,网络结构和网络行为10之间存在多对一的关系。大脑结构与行为之间缺乏一对一的关系增加了采用多元和机器学习方法的重要原因。这些方法可以检查结构 - 行为关系的整个空间。这些方法的一种有希望的应用是寻找最佳的大脑结构。它提供了解决髓磷脂与轴突的比率最佳的机会,对于信号传导,白色与灰质的比例对于不同的行为领域是最佳的,以及其他概念上重要的问题。综上所述,我们认为,由于缺乏从MRI到大脑结构以及从大脑结构到行为的一对一映射,该领域受到了挑战(图1)。进步很大程度上依赖于弥合从MRI到大脑结构的差距并检查行为对大脑结构的多重实现性的能力。
17) Landén, M, Jonsson, L, Klahn, AL 等人 (2025) St. Göran 项目 - 对双相情感障碍进行纵向研究的多管齐下策略。《神经心理生物学》,先于印刷版在线发表。Doi:10.1159/000543335。(研究文章)16) Johansson, TBJ、Klahn, AL*、Göteson, A、Abé, C、Sellgren, CM、Landén, M。(2024)中枢神经系统炎症的脑脊液生物标志物可预测双相情感障碍的皮质衰退和健康对照组的心室扩大。《神经心理生物学》,先于印刷版在线发表。Doi:10.1159/000542888。(研究文章)15) Dietze, L, […]、Klahn, AL 等人。 (2024) 肥胖和双相情感障碍中的白质微结构:ENIGMA 双相情感障碍工作组对 2186 名个体的研究。分子精神病学,Doi:10.1038/s41380-024-02784-2。(研究文章)14) Klahn, AL*、Thompson, WH、Momoh, I、Abé, C、Landén, M。(2024)双相情感障碍中体感脑网络枢纽的省级和连接器特性。大脑皮层,34(9)。Doi:10.1093/cercor/bhae366。 (研究文章)13)Leehr, EJL, Brede, LS, Böhnlein, J, Roesmann, K, Gathmann, B, Herrman, MJ, Junghöfer, M, Schwarzmeier, H, Seeger, FR, Siminski, N, Straube, T, Klahn, AL , Weber, H, Schiele, M, Domschke, K, Lueken, U, Dannlowski, U. (2024) NPSR1 基因变异对蜘蛛恐惧症中阶段性恐惧和持续焦虑的神经相关性的影响——一种成像遗传学和独立复制方法。Soc Cogn Affect Neurosci, 19(1), nsae054。Doi:10.1093/scan/nsae054。(研究文章)12)McWhinney, S, […], Klahn, AL ,等人。 (2024) 主成分分析是捕捉复杂疾病多变量大脑特征的有效方法——针对患有躁郁症和肥胖症的人群的 ENIGMA 研究。《人脑映射》,45 (8),e26682。Doi:doi.org/10.1002/hbm.26682。(研究文章)11)Hilbert, K, […],Klahn, AL,等人。(2024)特定恐惧症及其动物和血液注射损伤亚型的皮层和皮层下大脑改变:ENIGMA 焦虑工作组的大型分析。《美国精神病学杂志》,181 (8),728–740。Doi:doi.org/10.1176/appi.ajp.20230032。 (研究文章)10) Klahn, AL* 、Thompson, WH、Abé, C、Liberg, B、Sellgren, CM、Klahn, P、Landén, M. (2023) 情绪正常型双相情感障碍患者躯体运动网络的功能连接改变。神经科学应用。Doi:doi.org/10.1016/j.nsa.2023.101139(研究文章)
1。Sarti P,Varasi S,Guerrera C,Rivi V等,探索冷漠成分及其在认知下降中的关系:网络横截面的见解。BMC Psych。(2024)。在Press 2。tascedda S,Sarti P,Rivi V等,用于对阿尔茨海默氏病和轻度认知障碍进行分类的高级AI技术。前衰老神经科学。(2024); https://doi.org/10.3389/fnagi.2024.1488050 3。Rivi V,Batabyal A,Benatti C,Blom JMC,Tascedda F,Lukowiak K. Quercetin,新的压力分子:使用Lymnaea Stagnalis研究这种黄酮类动物对多种压力源的转录和行为效应。Comp Bioch Physy Part C:毒理学与药理学(2025); doi.org/10.1016/j.cbpc.2024.110053 4。Colliva C *,Rivi V *,Sarti P,Cobelli I,Blom JMC。探索小儿脑癌幸存者中基于性别的神经心理学结果:一项试点研究。疾病(2024); doi.org/10.3390/diseases12110289 5。Rivi V,Batabyal A,Benatti C,Blom JMC,Tascedda F,Lukowiak K. Hot和冷暴露触发了实验室感染池塘蜗牛中明显的转录和行为反应。水生物J.(2024); doi.org/10.1016/j.watbs.2024.100315 6。Rivi V,Caruso G,Caraci F,Alboni S,Pani L,Tascedda F,Lukowiak K,Blom JMC,BenattiC。肉瘤中心环的行为和转录作用。j Neurosci res。(2024); doi.org/10.1002/jnr.25371 7。Rivi V,Rigillo G,Batabyal A,Lukowiak K,Pani L,Tascedda F,Benatti C,Blom JMC。不同的应激源独特地影响lymnaea stagnalis中央环神经节中内源性大麻素 - 代谢酶的表达。j Neuroch(2024); doi.org/10.1111/jnc.16147 8。Zanchi B,Sarti P,Rivi V等,音乐疗法对小儿肿瘤学的影响:意大利观察性研究。Healthcare Neuroch(2024); doi.org/10.3390/healthcare12111071 9。Guerzoni S,Lo Castro F,Baraldi C,Brovia D,Tascedda F,Rivi V *,Pani L.抗钙蛋白CGRP单克隆抗体可改善受慢性偏头痛患者的认知功能。compania头孢酸(2023); doi.org/ 10.4081/cc.2024.15760 10。Rivi V,Batabyal A,Benatti C,Sarti P,Blom JMC,Tascedda F,Lukowiak K.翻译和多学科
1。Feigin VL,Vos T,Nichols E等。全球神经系统疾病的负担:将证据转化为政策。柳叶刀神经。2020; 19(3):255-265。2。Vigo D,Thornicroft G,AtunR。估计精神疾病的真正全球负担。柳叶刀精神病学。2016; 3(2):171-178。 3。 Deuschl G,Beghi E,Fazekas F等。 欧洲神经系统疾病的负担:2017年全球疾病负担研究的分析。 柳叶刀公共卫生。 2020; 5(10):E551-E567。 4。 Olesen J,Gustavsson A,Svensson M等。 欧洲脑疾病的经济成本。 EUR J NEUROL。 2012; 19(1):155-162。 5。 Wittchen Hu,Jacobi F,Rehm J等。 2010年欧洲大脑的精神障碍和其他疾病的大小和负担。 EUR神经心理药物。 2011; 21(9):655-679。 6。 神经系统疾病:公共卫生挑战。 世界卫生组织,2006年。 SBN 978 92 4 156336 9。 7。 Dodart JC,Mathis C,Bales KR,Paul SM。 我的老鼠患有阿尔茨海默氏病? 基因脑行为。 2002; 1(3):142-155。 8。 Bolton C.药物疗效从体内模型转化为人类疾病,特别提及实验性自身免疫性脑脊髓炎和多发性硬化症。 炎症药理学。 2007; 15(5):183-187。 9。 Lassmann H.多发性硬化症的实验模型。2016; 3(2):171-178。3。Deuschl G,Beghi E,Fazekas F等。欧洲神经系统疾病的负担:2017年全球疾病负担研究的分析。柳叶刀公共卫生。2020; 5(10):E551-E567。 4。 Olesen J,Gustavsson A,Svensson M等。 欧洲脑疾病的经济成本。 EUR J NEUROL。 2012; 19(1):155-162。 5。 Wittchen Hu,Jacobi F,Rehm J等。 2010年欧洲大脑的精神障碍和其他疾病的大小和负担。 EUR神经心理药物。 2011; 21(9):655-679。 6。 神经系统疾病:公共卫生挑战。 世界卫生组织,2006年。 SBN 978 92 4 156336 9。 7。 Dodart JC,Mathis C,Bales KR,Paul SM。 我的老鼠患有阿尔茨海默氏病? 基因脑行为。 2002; 1(3):142-155。 8。 Bolton C.药物疗效从体内模型转化为人类疾病,特别提及实验性自身免疫性脑脊髓炎和多发性硬化症。 炎症药理学。 2007; 15(5):183-187。 9。 Lassmann H.多发性硬化症的实验模型。2020; 5(10):E551-E567。4。Olesen J,Gustavsson A,Svensson M等。 欧洲脑疾病的经济成本。 EUR J NEUROL。 2012; 19(1):155-162。 5。 Wittchen Hu,Jacobi F,Rehm J等。 2010年欧洲大脑的精神障碍和其他疾病的大小和负担。 EUR神经心理药物。 2011; 21(9):655-679。 6。 神经系统疾病:公共卫生挑战。 世界卫生组织,2006年。 SBN 978 92 4 156336 9。 7。 Dodart JC,Mathis C,Bales KR,Paul SM。 我的老鼠患有阿尔茨海默氏病? 基因脑行为。 2002; 1(3):142-155。 8。 Bolton C.药物疗效从体内模型转化为人类疾病,特别提及实验性自身免疫性脑脊髓炎和多发性硬化症。 炎症药理学。 2007; 15(5):183-187。 9。 Lassmann H.多发性硬化症的实验模型。Olesen J,Gustavsson A,Svensson M等。欧洲脑疾病的经济成本。EUR J NEUROL。2012; 19(1):155-162。5。Wittchen Hu,Jacobi F,Rehm J等。2010年欧洲大脑的精神障碍和其他疾病的大小和负担。EUR神经心理药物。2011; 21(9):655-679。 6。 神经系统疾病:公共卫生挑战。 世界卫生组织,2006年。 SBN 978 92 4 156336 9。 7。 Dodart JC,Mathis C,Bales KR,Paul SM。 我的老鼠患有阿尔茨海默氏病? 基因脑行为。 2002; 1(3):142-155。 8。 Bolton C.药物疗效从体内模型转化为人类疾病,特别提及实验性自身免疫性脑脊髓炎和多发性硬化症。 炎症药理学。 2007; 15(5):183-187。 9。 Lassmann H.多发性硬化症的实验模型。2011; 21(9):655-679。6。神经系统疾病:公共卫生挑战。世界卫生组织,2006年。SBN 978 92 4 156336 9。7。Dodart JC,Mathis C,Bales KR,Paul SM。我的老鼠患有阿尔茨海默氏病?基因脑行为。2002; 1(3):142-155。8。Bolton C.药物疗效从体内模型转化为人类疾病,特别提及实验性自身免疫性脑脊髓炎和多发性硬化症。炎症药理学。2007; 15(5):183-187。 9。 Lassmann H.多发性硬化症的实验模型。2007; 15(5):183-187。9。Lassmann H.多发性硬化症的实验模型。Rev Neurol(巴黎)。2007; 163(6-7):651-655。 10。 langui D,Lachapelle F,Duyckaerts C.神经退行性疾病的动物模型。 Med Sci(巴黎)。 2007; 23(2):180-186。 11。 Mackenzie IR,Bigio EH,Ince PG等。 病理TDP-43分裂 - 散发性肌萎缩性侧索硬化症来自肌萎缩性lateral骨硬化,并带有SOD1突变。 Ann Neurol。 2007; 61(5):427-434。 12。 Robertson J,Sanelli T,Xiao S等。 突变SOD1转基因小鼠中缺乏TDP-43异常表现出与ALS的差异。 Neurosci Lett。 2007; 420(2):128-132。 13。 Duyckaerts C,Potier MC,Delatour B.阿尔茨海默氏病模型和人类神经病理学:相似性和差异。 acta neuro-pathol。 2008; 115(1):5-38。 14。 Howlett DR,Richardson JC。 App转基因小鼠的病理学:阿尔茨海默氏病的模型还是APP的过度表达? 组醇组织性疾病。 2009; 24(1):83-100。 15。 Slavin A,Kelly-Modis L,Labadia M,Ryan K,Brown ML。 多发性硬化症的致病机制和实验模型。 自动城市。 2010; 43(7):504-513。 16。 Swarup V,Julien JP。 ALS发病机理:遗传学和小鼠模型的最新见解。 Prog神经心理药物精神病学。 2011; 35(2):363-369。 17。 否认A,Johnson AJ,Bieber AJ,Warrington AE,Rodriguez M,Pirko I. 病理生理学。 18。2007; 163(6-7):651-655。10。langui D,Lachapelle F,Duyckaerts C.神经退行性疾病的动物模型。Med Sci(巴黎)。2007; 23(2):180-186。 11。 Mackenzie IR,Bigio EH,Ince PG等。 病理TDP-43分裂 - 散发性肌萎缩性侧索硬化症来自肌萎缩性lateral骨硬化,并带有SOD1突变。 Ann Neurol。 2007; 61(5):427-434。 12。 Robertson J,Sanelli T,Xiao S等。 突变SOD1转基因小鼠中缺乏TDP-43异常表现出与ALS的差异。 Neurosci Lett。 2007; 420(2):128-132。 13。 Duyckaerts C,Potier MC,Delatour B.阿尔茨海默氏病模型和人类神经病理学:相似性和差异。 acta neuro-pathol。 2008; 115(1):5-38。 14。 Howlett DR,Richardson JC。 App转基因小鼠的病理学:阿尔茨海默氏病的模型还是APP的过度表达? 组醇组织性疾病。 2009; 24(1):83-100。 15。 Slavin A,Kelly-Modis L,Labadia M,Ryan K,Brown ML。 多发性硬化症的致病机制和实验模型。 自动城市。 2010; 43(7):504-513。 16。 Swarup V,Julien JP。 ALS发病机理:遗传学和小鼠模型的最新见解。 Prog神经心理药物精神病学。 2011; 35(2):363-369。 17。 否认A,Johnson AJ,Bieber AJ,Warrington AE,Rodriguez M,Pirko I. 病理生理学。 18。2007; 23(2):180-186。11。Mackenzie IR,Bigio EH,Ince PG等。病理TDP-43分裂 - 散发性肌萎缩性侧索硬化症来自肌萎缩性lateral骨硬化,并带有SOD1突变。Ann Neurol。 2007; 61(5):427-434。 12。 Robertson J,Sanelli T,Xiao S等。 突变SOD1转基因小鼠中缺乏TDP-43异常表现出与ALS的差异。 Neurosci Lett。 2007; 420(2):128-132。 13。 Duyckaerts C,Potier MC,Delatour B.阿尔茨海默氏病模型和人类神经病理学:相似性和差异。 acta neuro-pathol。 2008; 115(1):5-38。 14。 Howlett DR,Richardson JC。 App转基因小鼠的病理学:阿尔茨海默氏病的模型还是APP的过度表达? 组醇组织性疾病。 2009; 24(1):83-100。 15。 Slavin A,Kelly-Modis L,Labadia M,Ryan K,Brown ML。 多发性硬化症的致病机制和实验模型。 自动城市。 2010; 43(7):504-513。 16。 Swarup V,Julien JP。 ALS发病机理:遗传学和小鼠模型的最新见解。 Prog神经心理药物精神病学。 2011; 35(2):363-369。 17。 否认A,Johnson AJ,Bieber AJ,Warrington AE,Rodriguez M,Pirko I. 病理生理学。 18。Ann Neurol。2007; 61(5):427-434。 12。 Robertson J,Sanelli T,Xiao S等。 突变SOD1转基因小鼠中缺乏TDP-43异常表现出与ALS的差异。 Neurosci Lett。 2007; 420(2):128-132。 13。 Duyckaerts C,Potier MC,Delatour B.阿尔茨海默氏病模型和人类神经病理学:相似性和差异。 acta neuro-pathol。 2008; 115(1):5-38。 14。 Howlett DR,Richardson JC。 App转基因小鼠的病理学:阿尔茨海默氏病的模型还是APP的过度表达? 组醇组织性疾病。 2009; 24(1):83-100。 15。 Slavin A,Kelly-Modis L,Labadia M,Ryan K,Brown ML。 多发性硬化症的致病机制和实验模型。 自动城市。 2010; 43(7):504-513。 16。 Swarup V,Julien JP。 ALS发病机理:遗传学和小鼠模型的最新见解。 Prog神经心理药物精神病学。 2011; 35(2):363-369。 17。 否认A,Johnson AJ,Bieber AJ,Warrington AE,Rodriguez M,Pirko I. 病理生理学。 18。2007; 61(5):427-434。12。Robertson J,Sanelli T,Xiao S等。 突变SOD1转基因小鼠中缺乏TDP-43异常表现出与ALS的差异。 Neurosci Lett。 2007; 420(2):128-132。 13。 Duyckaerts C,Potier MC,Delatour B.阿尔茨海默氏病模型和人类神经病理学:相似性和差异。 acta neuro-pathol。 2008; 115(1):5-38。 14。 Howlett DR,Richardson JC。 App转基因小鼠的病理学:阿尔茨海默氏病的模型还是APP的过度表达? 组醇组织性疾病。 2009; 24(1):83-100。 15。 Slavin A,Kelly-Modis L,Labadia M,Ryan K,Brown ML。 多发性硬化症的致病机制和实验模型。 自动城市。 2010; 43(7):504-513。 16。 Swarup V,Julien JP。 ALS发病机理:遗传学和小鼠模型的最新见解。 Prog神经心理药物精神病学。 2011; 35(2):363-369。 17。 否认A,Johnson AJ,Bieber AJ,Warrington AE,Rodriguez M,Pirko I. 病理生理学。 18。Robertson J,Sanelli T,Xiao S等。突变SOD1转基因小鼠中缺乏TDP-43异常表现出与ALS的差异。Neurosci Lett。2007; 420(2):128-132。 13。 Duyckaerts C,Potier MC,Delatour B.阿尔茨海默氏病模型和人类神经病理学:相似性和差异。 acta neuro-pathol。 2008; 115(1):5-38。 14。 Howlett DR,Richardson JC。 App转基因小鼠的病理学:阿尔茨海默氏病的模型还是APP的过度表达? 组醇组织性疾病。 2009; 24(1):83-100。 15。 Slavin A,Kelly-Modis L,Labadia M,Ryan K,Brown ML。 多发性硬化症的致病机制和实验模型。 自动城市。 2010; 43(7):504-513。 16。 Swarup V,Julien JP。 ALS发病机理:遗传学和小鼠模型的最新见解。 Prog神经心理药物精神病学。 2011; 35(2):363-369。 17。 否认A,Johnson AJ,Bieber AJ,Warrington AE,Rodriguez M,Pirko I. 病理生理学。 18。2007; 420(2):128-132。13。Duyckaerts C,Potier MC,Delatour B.阿尔茨海默氏病模型和人类神经病理学:相似性和差异。acta neuro-pathol。2008; 115(1):5-38。 14。 Howlett DR,Richardson JC。 App转基因小鼠的病理学:阿尔茨海默氏病的模型还是APP的过度表达? 组醇组织性疾病。 2009; 24(1):83-100。 15。 Slavin A,Kelly-Modis L,Labadia M,Ryan K,Brown ML。 多发性硬化症的致病机制和实验模型。 自动城市。 2010; 43(7):504-513。 16。 Swarup V,Julien JP。 ALS发病机理:遗传学和小鼠模型的最新见解。 Prog神经心理药物精神病学。 2011; 35(2):363-369。 17。 否认A,Johnson AJ,Bieber AJ,Warrington AE,Rodriguez M,Pirko I. 病理生理学。 18。2008; 115(1):5-38。14。Howlett DR,Richardson JC。App转基因小鼠的病理学:阿尔茨海默氏病的模型还是APP的过度表达?组醇组织性疾病。2009; 24(1):83-100。 15。 Slavin A,Kelly-Modis L,Labadia M,Ryan K,Brown ML。 多发性硬化症的致病机制和实验模型。 自动城市。 2010; 43(7):504-513。 16。 Swarup V,Julien JP。 ALS发病机理:遗传学和小鼠模型的最新见解。 Prog神经心理药物精神病学。 2011; 35(2):363-369。 17。 否认A,Johnson AJ,Bieber AJ,Warrington AE,Rodriguez M,Pirko I. 病理生理学。 18。2009; 24(1):83-100。15。Slavin A,Kelly-Modis L,Labadia M,Ryan K,Brown ML。多发性硬化症的致病机制和实验模型。自动城市。2010; 43(7):504-513。16。Swarup V,Julien JP。ALS发病机理:遗传学和小鼠模型的最新见解。Prog神经心理药物精神病学。2011; 35(2):363-369。17。否认A,Johnson AJ,Bieber AJ,Warrington AE,Rodriguez M,Pirko I.病理生理学。18。动物模型在多发性硬化症研究中的相关性。2011; 18(1):21-29。Franco Bocanegra DK,Nicoll Jar,BocheD。阿尔茨海默氏病的先天免疫力:动物模型的相关性?j神经传输(维也纳)。2018; 125(5):827-846。 19。 Biegon A,Fry PA,Paden CM,Alexandrovich A,Tsenter J,Shohami E.小鼠闭合头部损伤后N-甲基 - d-大冬型受体的动态变化:对治疗神经和认知缺陷的影响。 Proc Natl Acad Sci u s a。 2004; 101(14):5117-5122。 20。 Boche D,Perry VH,Nicoll JA。 审查:小胶质细胞的激活模式及其在人脑中的鉴定。 神经性疾病Appl Neurobiol。 2013; 39(1):3-18。 21。 Gerdes MJ,Sevinsky CJ,Sood A等。 高度多重的单细胞分析,对福尔马林固定,石蜡包裹的癌组织。 Proc Natl Acad Sci u s a。 2013; 110(29):11982-11987。2018; 125(5):827-846。19。Biegon A,Fry PA,Paden CM,Alexandrovich A,Tsenter J,Shohami E.小鼠闭合头部损伤后N-甲基 - d-大冬型受体的动态变化:对治疗神经和认知缺陷的影响。Proc Natl Acad Sci u s a。2004; 101(14):5117-5122。20。Boche D,Perry VH,Nicoll JA。 审查:小胶质细胞的激活模式及其在人脑中的鉴定。 神经性疾病Appl Neurobiol。 2013; 39(1):3-18。 21。 Gerdes MJ,Sevinsky CJ,Sood A等。 高度多重的单细胞分析,对福尔马林固定,石蜡包裹的癌组织。 Proc Natl Acad Sci u s a。 2013; 110(29):11982-11987。Boche D,Perry VH,Nicoll JA。审查:小胶质细胞的激活模式及其在人脑中的鉴定。神经性疾病Appl Neurobiol。2013; 39(1):3-18。 21。 Gerdes MJ,Sevinsky CJ,Sood A等。 高度多重的单细胞分析,对福尔马林固定,石蜡包裹的癌组织。 Proc Natl Acad Sci u s a。 2013; 110(29):11982-11987。2013; 39(1):3-18。21。Gerdes MJ,Sevinsky CJ,Sood A等。高度多重的单细胞分析,对福尔马林固定,石蜡包裹的癌组织。Proc Natl Acad Sci u s a。2013; 110(29):11982-11987。2013; 110(29):11982-11987。
1. Malinger G、Paladini D、Haratz KK、Monteagudo A、Pilu GL、Timor-Tritsch IE。ISUOG 实践指南(更新版):胎儿中枢神经系统超声检查。第 1 部分:筛查检查的表现和有针对性的神经超声检查指征。妇产科超声。2020;56:476-484。2. De Oliveira Júnior RE、Teixeira SR、Santana EFM 等人。宫内生长受限胎儿颅骨和脑参数的磁共振成像。放射学杂志。2021;54:141-147。3. Jarvis DA、Finney CR、Griffiths PD。使用宫内 3D 体积 MR 成像对胎儿颅内区室进行规范体积测量。欧洲放射学杂志。 2019;29:3488-3495。4. 任建英,朱敏,王刚,桂英,姜锋,董胜哲。使用 3-D 容积 MRI 量化胎儿颅内结构体积:妊娠 19 至 37 周的正常值。神经科学前沿。2022;12(16):886083。5. Sadhwani A、Wypij D、Rofeberg V 等人。胎儿脑体积可预测先天性心脏病的神经发育。循环。2022;12(145):1108-1119。6. Sarno M、Aquino M、Pimentel K 等人。疑似先天性寨卡病毒综合征小头畸形胎儿中枢神经系统进行性病变。妇产科超声。 2017;50:717-722。7. Prayer D、Malinger G、Brugger PC 等。ISUOG 实践指南:胎儿磁共振成像的表现。妇产科超声。2017;49:671-680。8. Resta S、Scandella G、Mappa I、Pietrolucci ME、Maqina P、Rizzo G。体外受精后妊娠的胎盘体积和子宫动脉多普勒:全面的文献综述。临床医学杂志。2022;29(11):5793。9. Alves CM、Araujo Júnior E、Nardozza LM 等。多平面模式下三维超声检查胎儿脑裂发育的参考范围。超声医学杂志。2013;32:269-277。 10. Kalache KD、Espinoza J、Chaiworapongsa T 等。三维超声胎儿肺容积测量:多平面法与旋转(VOCAL™)技术系统比较研究。妇产科超声。2003;21:111-118。11. Kusanovic JP、Nien JK、Gonçalves LF 等。反转模式和 3D 手动分割在胎儿充满液体的结构体积测量中的应用:与虚拟器官计算机辅助分析(VOCAL™)进行比较。妇产科超声。2008;31:177-186。
1. Kalia LV, Lang AE。帕金森病。柳叶刀 2015;386:896-912。2. Giros B, Caron MG。多巴胺转运蛋白的分子表征。药理学趋势 1993;14:43-49。3. Mozley PD, Schneider JS, Acton PD 等。[99mTc]TRODAT-1 与帕金森病患者和健康志愿者中多巴胺转运蛋白的结合。核医学杂志 2000;41:584-9。4. Kish SJ, Shannak K, Hornykiewicz O。特发性帕金森病患者纹状体多巴胺损失模式不均匀。病理生理和临床意义。 N Engl J Med 1988;318(14):876-80。5. Brooks DJ。多巴胺转运蛋白的分子成像。Ageing Res Rev 2016;30:114-21。6. Seifert KD、Wiener JI。DaTscan 对运动障碍诊断和管理的影响:一项回顾性研究。Am J Neurodegener Dis 2013;2(1):29-34。7. Wullner U、Kaut O、deBoni L、Piston D、Schmitt I。帕金森病中的 DNA 甲基化。J Neurochem 2016;139(增刊 1):108–120。 8. Miranda-Morales E、Meier K、Sandoval-Carrillo A、Salas-Pacheco J、Vazquez-Cardenas P、Arias- Carrion O。DNA甲基化对帕金森病的影响。Front Mol Neurosci 2017;10:225。9. Dupont C、Armant R、Brenner AC。表观遗传学:定义、机制和临床视角。Stem Cell Res Ther 2016;27:351-7。10. Ai SX、Xu Q、Hu YC 等。散发性帕金森病患者血液中 SNCA 的低甲基化。J Neurol Sci 2014;337:123-128。11. Schmitt I、Kaut O、Khazneh H 等。 L-多巴在体内和体外增加帕金森病患者突触核蛋白的DNA甲基化。Mov Disord 2015;30:1794–801。12. De Mena L、Cardo LF、Coto E、Alvarez V。帕金森病患者和健康对照者的大脑中PARK2的DNA甲基化没有差异。Mov Disord 2013;28(14):2032–3。13. Coupland KG、Mellick GD、Silburn PA等。帕金森病患者群体中MAPT基因的DNA甲基化以及维生素E在体外的调节作用。Mov Disord 2014;2913:1606–14。 14. Cai Y, Liu S, Sothern RB, Xu S, Chan P. 健康和帕金森病患者总白细胞中时钟基因 Per1 和 Bmal1 的表达。欧洲神经学杂志 2010;17(4):550-4。15. Su X, Chu Y, Kordower JH 等。帕金森病中的 PGC-1α 启动子甲基化。PLoS One 2015;10(8),e0134087。16. Moore K, McKnight AJ, Craig D 等。帕金森病的表观基因组全关联研究。神经分子医学 2014;16(4):845-55。
18. Shaito、A.*、H. Hasan、KJ Habashy、W. Fakih、S. Abdelhady、F. Ahmad、K. Zibara、AH Eid、AF El-Yazbi 和 FH Kobeissy。 “西方饮食加剧创伤后脑损伤的神经元损伤:相互作用的可能途径。” EBioMedicine,卷57,2020,页102829,doi:10.1016/j.ebiom.2020.102829。 * 第一作者。如果= 5.736。 19. Maha Tabet、Samar Abdelhady、Nour Al Huda Shaito、Marya El-Kurdi、Hiba Hasan、Reem Abedi、Nawara Osman、Riyad El-Khoury、Abdullah Shaito*、Firas H Kobeissy*。 “脑损伤中的线粒体:抗氧化剂来救援!”正面。 Young Minds,2020 年,DOI:10.3389/frym.2020.510817。 * 通讯作者。 20. Hiba Hasan、Maha Tabet、Samar Abdelhady、Sarah Halabi、Karl John Habashy、Firas H Kobeissy*、Abdullah Shaito*。 “创伤性脑损伤中的神经发生和神经退行性之间的拉锯战。” Frontiers Young Minds,2020 年。 DOI: 10.3389/frym.2020.00119。 * 通讯作者。 21. Fatimah Ahmad, Hiba Hasan, Samar Abdelhady, Walaa Fakih, Nawara Osman, Abdullah Shaito * , Firas Kobeissy. “健康膳食快乐大脑:饮食如何影响大脑功能?” Frontiers Young Minds,2021 年。 9:578214。 doi: 10.3389/frym.2021.578214。 * 通讯作者 22. Ghareghani, M., A. Ghanbari, A. Eid, A. Shaito, W. Mohamed, S. Mondello 和 K. Zibara。 “实验性自身免疫性脑脊髓炎 (Eae) 动物模型中的激素。”翻译神经科学,卷12,没有。 1,2021,页164-189,doi:10.1515/tnsci-2020-0169。 23. Tanios J、Al-Halabi S、Hasan H、Abdelhady S、Saliba J、Shaito A* 和 Kobeissy F。”组织工程在创伤性脑损伤中的应用”,2021年。前沿。年轻的心灵。九:514428。 doi: 10.3389/frym.2020.514428。 * 通讯作者。 24. Haidar MA、Shakkour Z、Reslan MA、Al-Haj N、Chamoun P、Habashy K、Kaafarani H、Shahjouei S、Farran SH、Shaito A 等。 2022.SARS-CoV-2 参与中枢神经系统组织损伤。神经再生研究。 17(6):1228-1239。英语25.Slika H、Mansour H、Wehbe N、Nasser SA、Iratni R、Nasrallah G、Shaito A、Ghaddar T、Kobeissy F、Eid AH。 2022.黄酮类化合物在癌症中的治疗潜力:ROS 介导的机制。生物医学药物治疗。 146:112442。英语26. Tabet M、El-Kurdi M、Haidar MA、Nasrallah L、Reslan MA、Shear D、Pandya JD、El-Yazbi AF、Sabra M、Mondello S 等人。 2022. 米托醌补充剂可减轻慢性时间点重复性轻度创伤性脑损伤后的氧化应激和病理结果。神经学实验。 351:113987。英语27. Zebian A、El-Dor M、Shaito A、Mazurier F、Rezvani HR、Zibara K. 2022. XPC 在 DNA 损伤修复之外的多方面作用:p53 依赖性和 p53 非依赖性
1。Permanne B,Sand A,Ousson S,NényM,Hantson J,Schubert R,Wiessner C,Quattropani A,Beher D. O -Glcnacase抑制剂ASN90是TAU和α-蛋白核蛋白蛋白质病的多型药物候选药物。ACS Chem Neurosci。2022 Apr 20; 13(8):1296-1314。 doi:10.1021/acschemneuro.2c00057。EPUB 2022 3月31日。PMID:35357812; PMCID:PMC9026285。 2。 Pratt MR,Vocadlo DJ。 理解和利用O-GLCNAC在神经退行性疾病中的作用。 J Biol Chem。 2023 DEC; 299(12):105411。 doi:10.1016/j.jbc.2023.105411。 EPUB 2023 10月31日。 PMID:37918804; PMCID:PMC10687168。 3。 Selnick HG,Hess JF,Tang C,Liu K,Schachter JB,Ballard JE,Marcus J,Klein DJ,Wang X,Pearson M,Savage MJ,Kaul R,Kaul R,Li TS,Vocadlo DJ,Zhou Y, 发现MK-8719,这是一种有效的O-Glcnacase抑制剂,是对功的潜在治疗方法。 J Med Chem。 2019年11月27日; 62(22):10062-10097。 doi:10.1021/acs.jmedchem.9b01090。 EPUB 2019年9月29日。 PMID:31487175。PMID:35357812; PMCID:PMC9026285。2。Pratt MR,Vocadlo DJ。理解和利用O-GLCNAC在神经退行性疾病中的作用。J Biol Chem。 2023 DEC; 299(12):105411。 doi:10.1016/j.jbc.2023.105411。 EPUB 2023 10月31日。 PMID:37918804; PMCID:PMC10687168。 3。 Selnick HG,Hess JF,Tang C,Liu K,Schachter JB,Ballard JE,Marcus J,Klein DJ,Wang X,Pearson M,Savage MJ,Kaul R,Kaul R,Li TS,Vocadlo DJ,Zhou Y, 发现MK-8719,这是一种有效的O-Glcnacase抑制剂,是对功的潜在治疗方法。 J Med Chem。 2019年11月27日; 62(22):10062-10097。 doi:10.1021/acs.jmedchem.9b01090。 EPUB 2019年9月29日。 PMID:31487175。J Biol Chem。2023 DEC; 299(12):105411。 doi:10.1016/j.jbc.2023.105411。EPUB 2023 10月31日。PMID:37918804; PMCID:PMC10687168。3。Selnick HG,Hess JF,Tang C,Liu K,Schachter JB,Ballard JE,Marcus J,Klein DJ,Wang X,Pearson M,Savage MJ,Kaul R,Kaul R,Li TS,Vocadlo DJ,Zhou Y,发现MK-8719,这是一种有效的O-Glcnacase抑制剂,是对功的潜在治疗方法。J Med Chem。 2019年11月27日; 62(22):10062-10097。 doi:10.1021/acs.jmedchem.9b01090。 EPUB 2019年9月29日。 PMID:31487175。J Med Chem。2019年11月27日; 62(22):10062-10097。 doi:10.1021/acs.jmedchem.9b01090。 EPUB 2019年9月29日。 PMID:31487175。2019年11月27日; 62(22):10062-10097。 doi:10.1021/acs.jmedchem.9b01090。EPUB 2019年9月29日。PMID:31487175。
1。Wang Z,Liu J,Shuai H等。 绘制产后妇女中脱位的全球流行率。 翻译精神病学。 2021; 11:543。 2。 Bai Y,Li Q,Cheng KK等。 基于诊断访谈的产后抑郁症患病率:系统评价和元分析。 焦虑症。 2023; 2023:8403222。 3。 Rasmussen MH,StrømM,Wohlfahrt J,Videbech P,Melbye M.风险,治疗持续时间和在没有先前精神病史的女性中产后情感障碍的复发风险:基于人群的同胞研究。 plos med。 2017; 14:E1002392。 4。 PeñalverBernabéB,Maki PM,Dowty SM等。 根据人类微生物组的围产期抑郁症中的精度。 心理药理学。 2020; 237:915-941。 5。 Rackers HS,Thomas S,Williamson K,Posey R,Kimmel MC。 微生物脑轴和围产期情绪和焦虑症中的新兴文献。 Psychoneuronodocrinology。 2018; 95:86-96。 6。 Fransson E,SörensenF,Kunovac Kallak T等。 产妇围产期抑郁症状轨迹和对幼儿行为的影响 - 症状持续时间和母体结合的重要性。 j影响疾病。 2020; 273:542-551。 7。 Silverman Me,Reichenberg A,Savitz DA等。 产后抑郁症的危险因素:一项基于人群的研究。 焦虑症。 2017; 34:178-187。 8。 对话临床神经科学。Wang Z,Liu J,Shuai H等。绘制产后妇女中脱位的全球流行率。翻译精神病学。2021; 11:543。2。Bai Y,Li Q,Cheng KK等。 基于诊断访谈的产后抑郁症患病率:系统评价和元分析。 焦虑症。 2023; 2023:8403222。 3。 Rasmussen MH,StrømM,Wohlfahrt J,Videbech P,Melbye M.风险,治疗持续时间和在没有先前精神病史的女性中产后情感障碍的复发风险:基于人群的同胞研究。 plos med。 2017; 14:E1002392。 4。 PeñalverBernabéB,Maki PM,Dowty SM等。 根据人类微生物组的围产期抑郁症中的精度。 心理药理学。 2020; 237:915-941。 5。 Rackers HS,Thomas S,Williamson K,Posey R,Kimmel MC。 微生物脑轴和围产期情绪和焦虑症中的新兴文献。 Psychoneuronodocrinology。 2018; 95:86-96。 6。 Fransson E,SörensenF,Kunovac Kallak T等。 产妇围产期抑郁症状轨迹和对幼儿行为的影响 - 症状持续时间和母体结合的重要性。 j影响疾病。 2020; 273:542-551。 7。 Silverman Me,Reichenberg A,Savitz DA等。 产后抑郁症的危险因素:一项基于人群的研究。 焦虑症。 2017; 34:178-187。 8。 对话临床神经科学。Bai Y,Li Q,Cheng KK等。基于诊断访谈的产后抑郁症患病率:系统评价和元分析。焦虑症。2023; 2023:8403222。3。Rasmussen MH,StrømM,Wohlfahrt J,Videbech P,Melbye M.风险,治疗持续时间和在没有先前精神病史的女性中产后情感障碍的复发风险:基于人群的同胞研究。plos med。2017; 14:E1002392。 4。 PeñalverBernabéB,Maki PM,Dowty SM等。 根据人类微生物组的围产期抑郁症中的精度。 心理药理学。 2020; 237:915-941。 5。 Rackers HS,Thomas S,Williamson K,Posey R,Kimmel MC。 微生物脑轴和围产期情绪和焦虑症中的新兴文献。 Psychoneuronodocrinology。 2018; 95:86-96。 6。 Fransson E,SörensenF,Kunovac Kallak T等。 产妇围产期抑郁症状轨迹和对幼儿行为的影响 - 症状持续时间和母体结合的重要性。 j影响疾病。 2020; 273:542-551。 7。 Silverman Me,Reichenberg A,Savitz DA等。 产后抑郁症的危险因素:一项基于人群的研究。 焦虑症。 2017; 34:178-187。 8。 对话临床神经科学。2017; 14:E1002392。4。PeñalverBernabéB,Maki PM,Dowty SM等。根据人类微生物组的围产期抑郁症中的精度。 心理药理学。 2020; 237:915-941。 5。 Rackers HS,Thomas S,Williamson K,Posey R,Kimmel MC。 微生物脑轴和围产期情绪和焦虑症中的新兴文献。 Psychoneuronodocrinology。 2018; 95:86-96。 6。 Fransson E,SörensenF,Kunovac Kallak T等。 产妇围产期抑郁症状轨迹和对幼儿行为的影响 - 症状持续时间和母体结合的重要性。 j影响疾病。 2020; 273:542-551。 7。 Silverman Me,Reichenberg A,Savitz DA等。 产后抑郁症的危险因素:一项基于人群的研究。 焦虑症。 2017; 34:178-187。 8。 对话临床神经科学。根据人类微生物组的围产期抑郁症中的精度。心理药理学。2020; 237:915-941。5。Rackers HS,Thomas S,Williamson K,Posey R,Kimmel MC。微生物脑轴和围产期情绪和焦虑症中的新兴文献。Psychoneuronodocrinology。2018; 95:86-96。 6。 Fransson E,SörensenF,Kunovac Kallak T等。 产妇围产期抑郁症状轨迹和对幼儿行为的影响 - 症状持续时间和母体结合的重要性。 j影响疾病。 2020; 273:542-551。 7。 Silverman Me,Reichenberg A,Savitz DA等。 产后抑郁症的危险因素:一项基于人群的研究。 焦虑症。 2017; 34:178-187。 8。 对话临床神经科学。2018; 95:86-96。6。Fransson E,SörensenF,Kunovac Kallak T等。 产妇围产期抑郁症状轨迹和对幼儿行为的影响 - 症状持续时间和母体结合的重要性。 j影响疾病。 2020; 273:542-551。 7。 Silverman Me,Reichenberg A,Savitz DA等。 产后抑郁症的危险因素:一项基于人群的研究。 焦虑症。 2017; 34:178-187。 8。 对话临床神经科学。Fransson E,SörensenF,Kunovac Kallak T等。产妇围产期抑郁症状轨迹和对幼儿行为的影响 - 症状持续时间和母体结合的重要性。j影响疾病。2020; 273:542-551。7。Silverman Me,Reichenberg A,Savitz DA等。产后抑郁症的危险因素:一项基于人群的研究。焦虑症。2017; 34:178-187。 8。 对话临床神经科学。2017; 34:178-187。8。对话临床神经科学。Meltzer-Brody S.对围产期抑郁症的新见解:怀孕和产后的病原和治疗。2011; 13:89-100。 9。 Osimo EF,Pillinger T,Rodriguez IM,Khandaker GM,Pariante CM,Howes OD。 抑郁症中的炎症标志物:5,166例患者和5,083条控制的平均差异和可变性的荟萃分析。 大脑行为免疫。 2020; 87:901-909。 10。 Cheung SG,Goldenthal AR,Uhlemann AC,Mann JJ,Miller JM,Sublette ME。 肠道菌群和主要depertion的系统评价。 前沿心理。 2019; 10:34。 11。 EdvinssonÅ,BrännE,Hellgren C等。 产前抑郁症的女性的炎症标记较低,使M1/M2 bal ance从新方向成为焦点。 Psychoneuronodocrinology。 2017; 80:15-25。 12。 Fox C,Eichelberger K.孕产妇微生物组和妊娠外。 fertil stril。 2015; 104:1358-1363。 13。 Dinan TG,Cryan JF。 忧郁的微生物:肠道微生物与抑郁症之间的联系? neurogastroenterol motil。 2013; 25:713-719。 14。 Murphy JR,Paul S,Dunlop AL,Corwin EJ。 母体周围的脂肪生物暴露和产后抑郁症的风险。 res护士健康。 2018; 41:369-377。 doi:10.1002/nur.21881 15。 le Bastard Q,Al-Ghalith GA,GrégoireM等。 系统评价:由非抗生素处方药物引起的人类肠道营养不良。 Aliment Pharmacol Ther。2011; 13:89-100。9。Osimo EF,Pillinger T,Rodriguez IM,Khandaker GM,Pariante CM,Howes OD。抑郁症中的炎症标志物:5,166例患者和5,083条控制的平均差异和可变性的荟萃分析。大脑行为免疫。2020; 87:901-909。10。Cheung SG,Goldenthal AR,Uhlemann AC,Mann JJ,Miller JM,Sublette ME。肠道菌群和主要depertion的系统评价。前沿心理。2019; 10:34。11。EdvinssonÅ,BrännE,Hellgren C等。产前抑郁症的女性的炎症标记较低,使M1/M2 bal ance从新方向成为焦点。Psychoneuronodocrinology。2017; 80:15-25。12。Fox C,Eichelberger K.孕产妇微生物组和妊娠外。 fertil stril。 2015; 104:1358-1363。 13。 Dinan TG,Cryan JF。 忧郁的微生物:肠道微生物与抑郁症之间的联系? neurogastroenterol motil。 2013; 25:713-719。 14。 Murphy JR,Paul S,Dunlop AL,Corwin EJ。 母体周围的脂肪生物暴露和产后抑郁症的风险。 res护士健康。 2018; 41:369-377。 doi:10.1002/nur.21881 15。 le Bastard Q,Al-Ghalith GA,GrégoireM等。 系统评价:由非抗生素处方药物引起的人类肠道营养不良。 Aliment Pharmacol Ther。Fox C,Eichelberger K.孕产妇微生物组和妊娠外。fertil stril。2015; 104:1358-1363。 13。 Dinan TG,Cryan JF。 忧郁的微生物:肠道微生物与抑郁症之间的联系? neurogastroenterol motil。 2013; 25:713-719。 14。 Murphy JR,Paul S,Dunlop AL,Corwin EJ。 母体周围的脂肪生物暴露和产后抑郁症的风险。 res护士健康。 2018; 41:369-377。 doi:10.1002/nur.21881 15。 le Bastard Q,Al-Ghalith GA,GrégoireM等。 系统评价:由非抗生素处方药物引起的人类肠道营养不良。 Aliment Pharmacol Ther。2015; 104:1358-1363。13。Dinan TG,Cryan JF。 忧郁的微生物:肠道微生物与抑郁症之间的联系? neurogastroenterol motil。 2013; 25:713-719。 14。 Murphy JR,Paul S,Dunlop AL,Corwin EJ。 母体周围的脂肪生物暴露和产后抑郁症的风险。 res护士健康。 2018; 41:369-377。 doi:10.1002/nur.21881 15。 le Bastard Q,Al-Ghalith GA,GrégoireM等。 系统评价:由非抗生素处方药物引起的人类肠道营养不良。 Aliment Pharmacol Ther。Dinan TG,Cryan JF。忧郁的微生物:肠道微生物与抑郁症之间的联系?neurogastroenterol motil。2013; 25:713-719。 14。 Murphy JR,Paul S,Dunlop AL,Corwin EJ。 母体周围的脂肪生物暴露和产后抑郁症的风险。 res护士健康。 2018; 41:369-377。 doi:10.1002/nur.21881 15。 le Bastard Q,Al-Ghalith GA,GrégoireM等。 系统评价:由非抗生素处方药物引起的人类肠道营养不良。 Aliment Pharmacol Ther。2013; 25:713-719。14。Murphy JR,Paul S,Dunlop AL,Corwin EJ。 母体周围的脂肪生物暴露和产后抑郁症的风险。 res护士健康。 2018; 41:369-377。 doi:10.1002/nur.21881 15。 le Bastard Q,Al-Ghalith GA,GrégoireM等。 系统评价:由非抗生素处方药物引起的人类肠道营养不良。 Aliment Pharmacol Ther。Murphy JR,Paul S,Dunlop AL,Corwin EJ。母体周围的脂肪生物暴露和产后抑郁症的风险。res护士健康。2018; 41:369-377。 doi:10.1002/nur.21881 15。 le Bastard Q,Al-Ghalith GA,GrégoireM等。 系统评价:由非抗生素处方药物引起的人类肠道营养不良。 Aliment Pharmacol Ther。2018; 41:369-377。 doi:10.1002/nur.21881 15。le Bastard Q,Al-Ghalith GA,GrégoireM等。系统评价:由非抗生素处方药物引起的人类肠道营养不良。Aliment Pharmacol Ther。2018; 47:332-345。 16。 Zhernakova A,Kurilshikov A,Bonder MJ等。 基于人群的宏基因组学分析揭示了肠道微生物组组成和多样性的标记。 科学。 2016; 352:565-569。 17。 Brusselaers N.处方药和微生物组。 胃肠道临床。 2019; 48:331-342。2018; 47:332-345。16。Zhernakova A,Kurilshikov A,Bonder MJ等。基于人群的宏基因组学分析揭示了肠道微生物组组成和多样性的标记。科学。2016; 352:565-569。 17。 Brusselaers N.处方药和微生物组。 胃肠道临床。 2019; 48:331-342。2016; 352:565-569。17。Brusselaers N.处方药和微生物组。胃肠道临床。2019; 48:331-342。
隶属关系:(1) 西班牙巴塞罗那费雷尔医疗事务部。(2) 西班牙巴塞罗那费雷尔临床开发部。(3) 西班牙巴塞罗那费雷尔研发组合部。参考文献:(1) Alquezar C、Arya S、Kao AW。Tau 翻译后修饰:Tau 功能、降解和聚集的动态转化因子。Front Neurol。2021 年 1 月 7 日;11:595532。doi: 10.3389/fneur.2020.595532。PMID:33488497;PMCID:PMC7817643。(2) Alteen MG、Tan HY、Vocadlo DJ。监测和调节 O-GlcNA- 环化:O-GlcNAc 加工酶的测定和抑制剂。Curr Opin Struct Biol。 2021 年 6 月;68:157-165。doi:10.1016/j.sbi.2020.12.008。电子版 2021 年 1 月 31 日。PMID:33535148。(3) Pratt MR、Vocadlo DJ。了解和利用 O-GlcNAc 在神经退行性疾病中的作用。J Biol Chem。2023 年 12 月;299(12):105411。doi:10.1016/j。jbc.2023.105411。电子版 2023 年 10 月 31 日。PMID:37918804;PMCID:PMC10687168。 (4) Selnick HG、Hess JF、Tang C、Liu K、Schachter JB、Ballard JE、Marcus J、Klein DJ、Wang X、Pearson M、Savage MJ、Kaul R、Li TS、Vocadlo DJ、Zhou Y、Zhu Y、Mu C、Wang Y、Wei Z、Bai C、Duffy JL、McEachern EJ。发现 MK-8719(一种有效的 O-GlcNAcase 抑制剂)可作为 Tauopathies 的潜在治疗药物。J Med Chem。2019 年 11 月 27 日;62(22):10062-10097。doi:10.1021/acs.jmedchem.9b01090。电子版 2019 年 9 月 29 日。PMID:31487175。(5) Yuzwa SA、Shan X、Macauley MS 等人。增加 O-GlcNAc 可减缓神经退化并使 tau 稳定以防止聚集。Nat Chem Biol. 2012;8(4):393-399。2012 年 2 月 26 日发布。doi:10.1038/nchembio.797。(6) Yuzwa SA、Shan X、Macauley MS、Clark T、Skorobogatko Y、Vosseller K、Vocadlo DJ。增加 O-GlcNAc 可减缓神经退化并使 tau 稳定以防止聚集。Nat Chem Biol. 2012 年 2 月 26 日;8(4):393-9。doi: 10.1038/nchembio.797。 PMID: 22366723。(7) Permanne B、Sand A、Ousson S、Nény M、Hantson J、Schubert R、Wiessner C、Quattropani A、Beher D。O-GlcNAcase 抑制剂 ASN90 是治疗 Tau 和 α-突触核蛋白病的多模式候选药物。ACS Chem Neurosci。2022 年 4 月 20 日;13(8):1296-1314。doi: 10.1021/acschemneuro.2c00057。电子版 2022 年 3 月 31 日。PMID:35357812;PMCID:PMC9026285。(8) Ryan M、Quattropani A、Abd-Elaziz K、den Daas I、Schneider M、Ousson S、Neny M、Sand A 等人。在健康志愿者中开展的 O-glcnacase 抑制剂 ASN120290 作为进行性核上性麻痹和相关 tauopathies 的新疗法的 1 期研究。Alzheimers Dement。2018 年,第 14 卷,第 7 期,第 251 页。(9) 一项评估 FNP-223 对减缓进行性核上性麻痹 (PSP) 进展的疗效、安全性和药代动力学的研究。ClinicalTrials.gov [Internet]。网址:https://www.clinicaltrials.gov/study/NCT06355531。访问日期:2024 年 4 月 9 日。