特斯拉线圈生动地展示了电能。这种有趣的装置是 100 多年前由电力先驱之一尼古拉·特斯拉发明的。特斯拉线圈可以产生大量电力并产生壮观的放电。令人惊奇的是,它运行时的电量足以非常危险,甚至致命。特斯拉线圈经常用于电影中的特效,但它们也用于高压电的实验室研究。您可能在电影中见过的另一种装置是雅各布梯子。当反派试图使用巨大的机器和大量的电力来统治世界时,它有时会在背景中闪闪发光、噼啪作响。雅各布梯子中上升、噼啪作响的电弧是由电流从一块金属跳到另一块金属引起的。当电流跳跃时,它会加热它穿过的空气。这种热空气上升并将放电向上携带。不幸的是,这种非常令人印象深刻的装置的实际用途有限。然而,雅各布梯子和特斯拉线圈都生动地说明了电的一个重要特征——它能够从一个地方移动到另一个地方。利用技术,我们可以产生电力并将其输送到需要的地方,应用范围广泛,影响着我们生活的方方面面。雅各布的梯子
Nikola Angelov(美国) Joel H. Berg(美国) Avinash S. Bidra(美国) Judit Borbely(匈牙利) Lorenzo Breschi(意大利) Jeff Brucia(美国) Sabiha S. Bunek(美国) Marcelo Calamita(巴西) Ricardo Carvalho(加拿大) Gordon J. Christensen(美国) Julio Lyndon F. ana B. da Costa(美国) John D. Da Silva(美国) Simone Deliperi(意大利) Diana Dudea(罗马尼亚) Newton Fahl Jr. (Brazil) Dennis J. Fasbinder (USA) Vincent Fehmer (Switzerland) Eduardo Fernandez (Chile) Jack L. Ferracane (USA) Marco Ferrari (Italy) Federico Ferraris (Italy) Roland Frankenberger (Germany) German Gallucci (USA) Carlos Paico-Paz Garmi (USA) David Garmi (USA). sparik (Romania) Howard Gluckman (South Africa) Ronald E. Goldstein (USA) Jan-Frederik Güth (Germany) Linda Greenwall (UK) Effrat Habsha (Canada) Arndt Happe (Germany) Gavin C. Heymann (USA) Yung-Ting (Lizzy) Hsu (USA) Joda Schovski (USA) y) Joseph Y. Kan (USA) Matthias Kern (Germany) Greggory A. Kinzer (USA) Dubravka Knezovi ć Zlatari ć (Croatia) John C. Kois (USA) Vincent O. Kokich Jr. (美国) Stefanos Kourtis(希腊) Paul Lambrechts(比利时) Nathaniel Lawson(美国) Brian P. LeSage(美国)
1。Guatteri,M.,Mai,P.M。,&Beroza,G。C.(2004)。 用于强型地面运动预测的动态破裂模型的伪纳米近似。 美国地震学会的公告,94(6),2051- 2063年。 2。 Graves,R。W.和Pitarka,A。 (2010)。 使用混合方法宽带地面运动模拟。 美国地震学会的公告,100(5a),2095– 2123。 3。 Graves,R。和Pitarka,A。 (2016)。 在粗大断层上进行的运动地面运动模拟,包括3D随机速度扰动的影响。 美国地震学会的公告。 4。 Song,S.-G.,Dalguer,L。A.,&Mai,P.M。(2013)。 具有1分和2分统计的地震源参数的伪动态源建模。 Geophysical Journal International,196(3),1770– 1786年。 5。 Mai,P.M.,Galis,M.,Thingbaijam,K.K.S.,Vyas,J.C。,&Dunham,E。M.(2018)。 伪动力地面动作模拟中的故障粗糙度。 纯净和应用的地球物理Pageoph,174(9),3419–3450。 6。 Zongyi Li,Nikola Kovachki,Kamyar Azizzadenesheli,Burigede Liu,Kaushik Bhattacharya,Andrew Stuart和Anima Anandkumar。 参数偏微分方程的傅立叶神经操作员,2020。 7。 Andrews,D。J. (2005)。 破裂动力学,能量损失在滑动区域之外。 地球物理研究杂志,110,B01307。 8。 9。 10。Guatteri,M.,Mai,P.M。,&Beroza,G。C.(2004)。用于强型地面运动预测的动态破裂模型的伪纳米近似。美国地震学会的公告,94(6),2051- 2063年。2。Graves,R。W.和Pitarka,A。(2010)。使用混合方法宽带地面运动模拟。美国地震学会的公告,100(5a),2095– 2123。3。Graves,R。和Pitarka,A。(2016)。在粗大断层上进行的运动地面运动模拟,包括3D随机速度扰动的影响。美国地震学会的公告。4。Song,S.-G.,Dalguer,L。A.,&Mai,P.M。(2013)。具有1分和2分统计的地震源参数的伪动态源建模。Geophysical Journal International,196(3),1770– 1786年。5。Mai,P.M.,Galis,M.,Thingbaijam,K.K.S.,Vyas,J.C。,&Dunham,E。M.(2018)。 伪动力地面动作模拟中的故障粗糙度。 纯净和应用的地球物理Pageoph,174(9),3419–3450。 6。 Zongyi Li,Nikola Kovachki,Kamyar Azizzadenesheli,Burigede Liu,Kaushik Bhattacharya,Andrew Stuart和Anima Anandkumar。 参数偏微分方程的傅立叶神经操作员,2020。 7。 Andrews,D。J. (2005)。 破裂动力学,能量损失在滑动区域之外。 地球物理研究杂志,110,B01307。 8。 9。 10。Mai,P.M.,Galis,M.,Thingbaijam,K.K.S.,Vyas,J.C。,&Dunham,E。M.(2018)。伪动力地面动作模拟中的故障粗糙度。纯净和应用的地球物理Pageoph,174(9),3419–3450。6。Zongyi Li,Nikola Kovachki,Kamyar Azizzadenesheli,Burigede Liu,Kaushik Bhattacharya,Andrew Stuart和Anima Anandkumar。参数偏微分方程的傅立叶神经操作员,2020。7。Andrews,D。J. (2005)。 破裂动力学,能量损失在滑动区域之外。 地球物理研究杂志,110,B01307。 8。 9。 10。Andrews,D。J.(2005)。破裂动力学,能量损失在滑动区域之外。地球物理研究杂志,110,B01307。8。9。10。Tinti,E.,Fukuyama,E.,Piatanesi,A。,&Cocco,M。(2005)。 运动源时间函数与地震动力学兼容。 美国地震学会的公告,95,1211–1223。 Mai,P。M.和Beroza,G。C.(2002)。 一个空间随机场模型,以表征地震滑移中的复杂性。 地球物理研究杂志,107(B11),2308。 Mai,下午,Spudich,P.,Botwright,J。;有限源破裂模型中的低中心位置。 美国地震学会公告200; 95(3):965–980。Tinti,E.,Fukuyama,E.,Piatanesi,A。,&Cocco,M。(2005)。运动源时间函数与地震动力学兼容。美国地震学会的公告,95,1211–1223。Mai,P。M.和Beroza,G。C.(2002)。 一个空间随机场模型,以表征地震滑移中的复杂性。 地球物理研究杂志,107(B11),2308。 Mai,下午,Spudich,P.,Botwright,J。;有限源破裂模型中的低中心位置。 美国地震学会公告200; 95(3):965–980。Mai,P。M.和Beroza,G。C.(2002)。一个空间随机场模型,以表征地震滑移中的复杂性。地球物理研究杂志,107(B11),2308。Mai,下午,Spudich,P.,Botwright,J。;有限源破裂模型中的低中心位置。 美国地震学会公告200; 95(3):965–980。Mai,下午,Spudich,P.,Botwright,J。;有限源破裂模型中的低中心位置。美国地震学会公告200; 95(3):965–980。
特斯拉线圈生动地展示了电能。这种有趣的装置是 100 多年前由电力先驱之一尼古拉·特斯拉发明的。特斯拉线圈可以产生大量电力并产生壮观的放电。令人惊奇的是,它运行时的电量足以非常危险,甚至致命。特斯拉线圈经常用于电影中的特效,但它们也用于高压电的实验室研究。您可能在电影中见过的另一种装置是雅各布梯子。当反派试图使用巨大的机器和大量的电力来统治世界时,它有时会在背景中闪闪发光、噼啪作响。雅各布梯子中上升、噼啪作响的电弧是由电流从一块金属跳到另一块金属引起的。当电流跳跃时,它会加热它穿过的空气。这种热空气上升并将放电向上携带。不幸的是,这种非常令人印象深刻的装置的实际用途有限。然而,雅各布梯子和特斯拉线圈都生动地说明了电的一个重要特征——它能够从一个地方移动到另一个地方。利用技术,我们可以发电并将电力输送到需要的地方,应用范围广泛,影响着我们生活的方方面面。雅各布的梯子
特斯拉线圈生动地展示了电能。这种有趣的装置是 100 多年前由电力先驱之一尼古拉·特斯拉发明的。特斯拉线圈可以产生大量电力并产生壮观的放电。令人惊奇的是,它运行时的电量非常危险,甚至致命。特斯拉线圈经常用于电影中的特效,但它们也用于高压电的实验室研究。您可能在电影中见过的另一种装置是雅各布天梯。当反派试图使用巨大的机器和大量的电力来统治世界时,它有时会在背景中闪闪发光、噼啪作响。雅各布天梯中上升、噼啪作响的电弧是由电流从一块金属跳到另一块金属引起的。当电流跳跃时,它会加热它穿过的空气。热空气上升并将放电向上携带。不幸的是,这种非常令人印象深刻的设备实际用途有限。然而,雅各布梯子和特斯拉线圈都生动地说明了电的一个重要特征——它能够从一个地方移动到另一个地方。利用技术,我们可以在影响我们生活各个方面的广泛应用中产生电力并将其移动到需要的地方。雅各布梯子
特斯拉线圈生动地展示了电能。这种有趣的装置是 100 多年前由电力先驱之一尼古拉·特斯拉发明的。特斯拉线圈可以产生大量电力并产生壮观的放电。令人惊奇的是,它运行时的电量足以非常危险,甚至致命。特斯拉线圈经常用于电影中的特效,但它们也用于高压电的实验室研究。您可能在电影中见过的另一种装置是雅各布梯子。当反派试图使用巨大的机器和大量的电力来统治世界时,它有时会在背景中闪闪发光、噼啪作响。雅各布梯子中上升、噼啪作响的电弧是由电流从一块金属跳到另一块金属引起的。当电流跳跃时,它会加热它穿过的空气。这种热空气上升并将放电向上携带。不幸的是,这种非常令人印象深刻的装置的实际用途有限。然而,雅各布梯子和特斯拉线圈都生动地说明了电的一个重要特征——它能够从一个地方移动到另一个地方。利用技术,我们可以产生电力并将其输送到需要的地方,应用范围广泛,影响着我们生活的方方面面。雅各布的梯子
特斯拉线圈生动地展示了电能。这种有趣的装置是 100 多年前由电力先驱之一尼古拉·特斯拉发明的。特斯拉线圈可以产生大量电力并产生壮观的放电。令人惊奇的是,它运行时的电量足以非常危险,甚至致命。特斯拉线圈经常用于电影中的特效,但它们也用于高压电的实验室研究。您可能在电影中见过的另一种装置是雅各布梯子。当反派试图使用巨大的机器和大量的电力来统治世界时,它有时会在背景中闪闪发光、噼啪作响。雅各布梯子中上升、噼啪作响的电弧是由电流从一块金属跳到另一块金属引起的。当电流跳跃时,它会加热它穿过的空气。这种热空气上升并将放电向上携带。不幸的是,这种非常令人印象深刻的装置的实际用途有限。然而,雅各布梯子和特斯拉线圈都生动地说明了电的一个重要特征——它能够从一个地方移动到另一个地方。利用技术,我们可以产生电力并将其输送到需要的地方,应用范围广泛,影响着我们生活的方方面面。雅各布的梯子
1 课程评估将通过家庭作业、课堂演示和期末项目进行。 2 将会有很多小作业。它们可以由两人一组完成。 3 将会有几个 10 分钟的幻灯片演示或视频,由两人一组的学生制作并在课堂上播放。对于演示,学生将从讲师建议的列表中选择一些与量子计算相关的主题,并向全班展示。 4 期末项目可以由两到四名学生的团队完成。可交付成果将包括一份报告和一份视频演示,模拟会议论文和演示。报告将采用科学会议论文的形式。它将大约有八页格式化的页面。展示演示文稿将填满最后两天的课程。 5 Gradescope 将用于管理评分过程。 6 讲师将在其私人虚拟网络服务器 https://wrf.ecse.rpi.edu/nikola/pages/Teaching/quantum-f202 2 上使用静态内容管理系统来维护包含教学大纲、家庭作业和讲座摘要的在线博客。 7 一些编程作业将使用例如 github 上提供的 IBM 量子计算模拟器。它可以下载并在任何机器上运行,例如学生的个人机器。对于更严肃的计算,可以使用 parallel.ecse.rpi.edu,但可能没有必要。它是双 14 核 Intel Xeon,主内存为 256GB。 8 其他作业将使用所有三种主要的量子架构,这些架构可在网上获得,例如来自 IBM、Microsoft 和 Amazon。 9 当最终的数字成绩转换为字母时,如果学生在课堂上热情而积极地参与,那么字母等级可能会上升到下一个类别。 10 以上所有内容都可以出于充分理由进行修改。例如,如果有更多的学生,那么我们可能
会议主席 Nikola Kasabov,新西兰奥克兰理工大学和英国阿尔斯特大学 蒋旭东,新加坡南洋理工大学 徐成忠,澳门大学,中国澳门 会议联合主席 Hiep Xuan Huynh,越南芹苴大学 张玉东,英国莱斯特大学 项目主席 Ke-Lin Du,加拿大康考迪亚大学 Venkata Duvvuri,美国甲骨文公司 Vijayakumar Varadarajan,澳大利亚新南威尔士大学 项目联合主席 雷雪琳,华东理工大学,中国 Iman AbouHassan,保加利亚索非亚理工大学 周世华,大连大学,中国 专题主席 Naoyuki Ishimura,日本中央大学 Takahiko Fujita,日本中央大学 Hiep Xuan Huynh,越南芹苴大学 Nhat Minh Viet Vo,越南顺化大学 孔祥杰,浙江工业大学,中国 李成明,中山大学,中国 梁程超,重庆邮电大学,中国 组委会 王婷,北京控制机器人与智能技术研究所,中国 技术程序委员会 A. Mathew,美国伯大尼学院 Samarjeet Borah,印度锡金马尼帕尔大学 Herman Sahota,美国爱荷华州立大学 Chang Gyoon Lim,韩国全南国立大学 Isidoros Perikos,希腊帕特雷大学 肖驰,中国海南大学 赵耀池,中国海南大学 Jesuk Ko,韩国光州大学
Honorary Chair Weihua Gui, China Advisory Chairs Jonathan Chan, Thailand Zeng-Guang Hou, China Nikola Kasabov, New Zealand Derong Liu, China Seiichi Ozawa, Japan Kevin Wong, Australia General Chairs Tingwen Huang, Qatar Chunhua Yang, China Program Chairs Long Cheng, China Chaojie Li, Australia Hongyi Li, China Biao Luo, China Zheng-Guang Wu, China Technical Chairs Xing He, China Keke Huang, China Huaqing Li, China Qi Zhou, China Local Arrangement Chairs Wenfeng Hu, China Bei Sun, China Finance Chairs Fanbiao Li, China Hayaru Shouno, Japan Xiaojun Zhou, China Special Session Chairs Hongjing Liang, China Paul S. Pang, Australia Qiankun Song, China Lin Xiao, China Tutorial Chairs Min Liu, China M. Tanveer, India Guanghui Wen, China Publicity Chairs Sabri Arik, Turkey Sung-Bae Cho, South Korea Maryam Doborjeh, New Zealand El-Sayed M. El-Alfy, Saudi Arabia Ashish Ghosh, India Chuandong Li, China Weng Kin Lai, Malaysia Chu Kiong Loo, Malaysia Qinmin Yang, China Zhigang Zeng, China Publication Chairs Zhiwen Chen, China Andrew Chi-Sing Leung, HK Xin Wang, China Xiaofeng Yuan, China Secretaries Yun Feng, China Bingchuan Wang, China Webmasters Tianmeng Hu, China Xianzhe Liu, China