AVT-085专家会议为新/现有技术和物流管理流程的开发和实施战略提供了指导,从而能够优先考虑机队管理能力和研发方案。重点是军用飞机,但讨论的许多原则也适用于其他防御系统。这些论文涵盖了老化问题的各个方面,包括结构完整性、腐蚀、航空电子设备、机械子系统、结构和布线。其他交流则致力于讨论信息管理在老龄化问题中的作用。
MikkoMäkelä:氯匹氨派先前出现的不良反应后,坦佩雷大学医学执照教育的先进医学研究论文2024年6月是第二代抗精神病患者,也是唯一获得批准的治疗耐药性精神分裂症的药物。clotsapine具有丰富的副作用,其中一些甚至可能威胁到患者的生命。由于这些缺点,通常有必要停止向患者提供氯氮平,即使这对减轻精神病的症状很有用。本系统文献综述研究了氯氮平在先前的躯体不良反应之后的成功。文学搜索是使用“氯氮平”和“(“撤退”或“ Rechallenge””)从PubMed数据库进行的。搜索,收到了197个参考文献,其中98个在审查中获得了批准。缩写和研究的全文在坦佩雷大学图书馆,其他英语以外的研究以及不涉及clotsapine开始的研究。
Robotics Survey Pieter Abbeel, David Abbink, Farshid Alambeigi, Farshad Arvin, Nikolay Atanasov, Ruzena Bajcsy, Philip Beesley, Tapomayukh Bhattacharjee, Jeannette Bohg, David J. Cappelleri, Qifeng Chen, I-Ming Chen, Jackie Cheng, Cynthia Chem, Chemo, Steve Chryso Collins, David Correa, Brandon DeHart, Katie Driggs-Campbell, Nima Fazeli, Animesh Garg, Maged Ghoneima, Tobias Haschke, Kris Hauser, David Held, Yue Hu, Josie Hughes, Soo Jeon, Dimitrios Kanoulas, Jonathan Kelly, Oliver Kroemer, Changlio Liu, Maud, Martin, and Sajum. buro Matunaga, Satoshi Miura, Norrima Mokhtar, Elena De Momi, Christopher Nehaniv, Christopher Nielsen, Ryuma Niyama, Allison Okamura, Necmiye Ozay, Jamie Paik, Frank Park, Karthik Ramani, Carolyn Ren, Jan Rosell, Jee-Hwan Ryu, Tim Salcudean, Oliver Scheider, Peter Sommons, Alva Schoen, Stone ne, Michael Tolley, Tsu-Chin Tsao, Michiel van de Panne, Andy Weightman, Alexander Wong, Helge Wurdemann, Rong Xiong, Chao Xu, Geng Yang, Junzhi Yu, Wenzhen Yuan, Fu Zhang, Yuke Zhu
修道院:attr和淀粉样蛋白; attr-cm,具有心肌病的attr; hattr,atter继承; hattr-pn,多神经病; Ole,开放标签扩展; RNAi,干扰RNA; TTR,经硫代蛋白; wttr,attr Wild。参考:1。Ruberg和Al。 J Long Cold Coldio 2019; 73:2872–92; 2。 Maurer和Al J Long Cold Cardio 2016; 68:161–72; 3。 Adams和Al。 nat Rev Neurol 2019; 15:387–404; 4。 Castan和Al。 失败Rev 2015; 20:163–78; 5。 编织和Al。 心脏失败24:1700–12; 6。 车道和Al。 循环2019; 140:16–26; 7。 nativate-nicalu和al。 心脏失败2021; 8:3875–84; 8。 Gillmore和Al。 我们的心J 2018; 39:299–806; 9。 Coelho和Al。 Curr幸福2013; 29:63–76; 10。 Adams和Al。 n参与JMS 2018; 379:11-21; 11。 Maurer和Al。 n Engl J Med 2023; 389:1553–65。Ruberg和Al。J Long Cold Coldio 2019; 73:2872–92; 2。Maurer和Al J Long Cold Cardio 2016; 68:161–72; 3。 Adams和Al。 nat Rev Neurol 2019; 15:387–404; 4。 Castan和Al。 失败Rev 2015; 20:163–78; 5。 编织和Al。 心脏失败24:1700–12; 6。 车道和Al。 循环2019; 140:16–26; 7。 nativate-nicalu和al。 心脏失败2021; 8:3875–84; 8。 Gillmore和Al。 我们的心J 2018; 39:299–806; 9。 Coelho和Al。 Curr幸福2013; 29:63–76; 10。 Adams和Al。 n参与JMS 2018; 379:11-21; 11。 Maurer和Al。 n Engl J Med 2023; 389:1553–65。Maurer和AlJ Long Cold Cardio 2016; 68:161–72; 3。Adams和Al。 nat Rev Neurol 2019; 15:387–404; 4。 Castan和Al。 失败Rev 2015; 20:163–78; 5。 编织和Al。 心脏失败24:1700–12; 6。 车道和Al。 循环2019; 140:16–26; 7。 nativate-nicalu和al。 心脏失败2021; 8:3875–84; 8。 Gillmore和Al。 我们的心J 2018; 39:299–806; 9。 Coelho和Al。 Curr幸福2013; 29:63–76; 10。 Adams和Al。 n参与JMS 2018; 379:11-21; 11。 Maurer和Al。 n Engl J Med 2023; 389:1553–65。Adams和Al。nat Rev Neurol 2019; 15:387–404; 4。Castan和Al。 失败Rev 2015; 20:163–78; 5。 编织和Al。 心脏失败24:1700–12; 6。 车道和Al。 循环2019; 140:16–26; 7。 nativate-nicalu和al。 心脏失败2021; 8:3875–84; 8。 Gillmore和Al。 我们的心J 2018; 39:299–806; 9。 Coelho和Al。 Curr幸福2013; 29:63–76; 10。 Adams和Al。 n参与JMS 2018; 379:11-21; 11。 Maurer和Al。 n Engl J Med 2023; 389:1553–65。Castan和Al。失败Rev 2015; 20:163–78; 5。 编织和Al。 心脏失败24:1700–12; 6。 车道和Al。 循环2019; 140:16–26; 7。 nativate-nicalu和al。 心脏失败2021; 8:3875–84; 8。 Gillmore和Al。 我们的心J 2018; 39:299–806; 9。 Coelho和Al。 Curr幸福2013; 29:63–76; 10。 Adams和Al。 n参与JMS 2018; 379:11-21; 11。 Maurer和Al。 n Engl J Med 2023; 389:1553–65。失败Rev 2015; 20:163–78; 5。编织和Al。心脏失败24:1700–12; 6。车道和Al。循环2019; 140:16–26; 7。nativate-nicalu和al。心脏失败2021; 8:3875–84; 8。Gillmore和Al。我们的心J 2018; 39:299–806; 9。Coelho和Al。Curr幸福2013; 29:63–76; 10。Adams和Al。 n参与JMS 2018; 379:11-21; 11。 Maurer和Al。 n Engl J Med 2023; 389:1553–65。Adams和Al。n参与JMS 2018; 379:11-21; 11。Maurer和Al。n Engl J Med 2023; 389:1553–65。
Andrea Alberti(Garching)Nayden Needev(索非亚)Christina Andreeva(Sofia)Georgi Nenchev(New Hampshire)Julian Dimitrov(Sofia)Jan Oxford(牛津)(牛津)Radim Filip(牛津)Radim Filip Orozco Ruiz(帝国)Barry Garraway(苏塞克斯)Christian Ospelkaus(Hannover)Genko Genov(Ulm)Sorin Paraoanu(Aalto)Simona Grigorova(Sofia)Kremena Parashkevova(Sofia) Roberto Grimaudo(Catania)Andon Rangelov(Sofia)Stying St Stying的Tom Rieckmann(Rostock)Thomas Halfmann(Darmstadt)Andreas Ruschhaupt(Cork)Meri Hari Hari Hariyhyunyan(Dijon) Georgii Semin(Dijon)Winni Hensinger(Sussex)Lidya Slavova(Sofia)Hristina Hristova(Sofia)Luk'a Slodicaka(Olomouc)Branislav Ilich(Sofia) Ivaylo Ivanov(索非亚)Niklas Stewen(Darmstadt)Niels Joseph(Darmstadt)Yannick Strocka(柏林)Geediminas Juzelias(Vilnius)Hristo Tonchev(Sofia) Boyan Torosov(1Qbit Vancouver)Jukka Kiukas(Abrystwyth)Vasil Vasilev(Sofia)Nadezhda Markova(Sofia)Nikolay Vitanov(Sofia)Ivo Mihov(Sofia)(Sofia)德国蒙特梅扎尼(Lorraine)Kaloyan Zlatanov(Sofia)Rodolfo Mu〜noz-Rodriguez(Siegen) div>
使用形态学基因婴儿繁荣(BBM)和wuschel2(WUS2)以及新的三元构建体增加了基因型范围和可用于玉米转化的外植体的类型。进一步优化BBM / WUS2的表达模式已导致快速玉米转化方法,这些方法更快,适用于更广泛的近交范围。但是,BBM / WUS2的表达会损害再生植物的质量,从而导致不育。我们推论转化后的剪切形态基因,但在再生之前会增加肥沃的T0植物的产生。我们开发了一种使用诱导位点特异性重组酶(CRE)来消除形态学基因的方法。在早期胚胎发育中使用了受发展调控的启动子,例如OLE,GLB1,END2和LTP2,以驱动CRE的CRE切除,并以25-100%的速度产生切除的事件。利用切除激活的可选标记的一种不同的策略,以53 - 68%的速度产生了切除的事件;但是,转化频率较低(13-50%)。使用诱导热冲击启动子(例如hsp17.7,hsp26)表达CRE,以及组织培养条件和构造设计的改善,导致T0转化的高频(29-69%),切除(50 - 97%),可用的质量事件(4--15%)(4-15%),几乎没有Escapes(非TransgaInic; 14 - 17%; 14 - 17%; 14 - 17%;该方法产生的转基因事件不含形态学和标记基因。
本论文的总体目标是利用敏捷固定翼无人机的所有机动能力来实现自主飞行。主要主题是机动设计、控制和运动规划。论文首先讨论了初步主题:动态飞行器模型、反馈控制器和优化框架,所有这些都将在论文的以下部分中使用。接下来,我们进行了一项调查,以评估横向滑移和螺旋桨电流在固定翼无人机的极限机动中的重要性。如果在设计机动时未考虑这两种现象中的一种或另一种,我们会根据性能损失来确定成本。
1940 RFID(射频识别)的概念可以追溯到第二次世界大战;它与无线电和雷达的发展有关。为了查明抵达英国领空的飞机是友军还是敌军,盟军在飞机上放置了大型信标或转发器,以响应雷达的呼叫。这个系统称为 IFF(识别:朋友或敌人;如今,空中交通管制仍然基于此原则),是 RFID 的首次应用。关于该主题的第一项研究是 Harry Stockman 的工作 [2],随后是 F. L. Vernon [3] 和 D.B. 的工作哈里斯[4]。最后两篇文章被认为是 RFID 的基础,并描述了至今仍在使用的原理。
摘要/摘要 为了实现现代科学技术教学的目标,组织以学生为中心的教学(SCI)至关重要。 SCI的组织需要教师在激励的环境中组织具有认知挑战性的教学的能力。研究的根本目的在于确定教师组织SCI是否与学校层面的因素(组织情境)和个人层面的因素(个人情境)相关。我们设计了一个包含四组因素的模型。结果表明,SCI 与所有四组因素之间存在统计学上的显著相关性。以学生为中心的科学技术教学:组织和个人层面因素的模型以学生为中心的教学对于实现现代科学技术教学目标至关重要。组织这样的课程需要教师有能力在激励的学习环境中设计具有认知挑战性的课程。研究的根本目的是探讨教师组织以学生为中心的教学是否与学校层面的因素(组织情境)和个人层面的因素(个人情境)相关。我们设计了一个包含四组因素的模型。结果表明,以学生为中心的教学与所有四组因素之间存在统计学上的显著关系。
高温柔性聚合物电介质对于高密度能量存储和转换至关重要。同时拥有高带隙、介电常数和玻璃化转变温度的需求对新型电介质聚合物的设计提出了巨大的挑战。在这里,通过改变悬挂在双环主链聚合物上的芳香侧链的卤素取代基,获得了一类具有可调热稳定性的高温烯烃,所有烯烃均具有不折不扣的大带隙。聚氧杂环丙烷酰亚胺 (PONB) 对位或邻位侧链基团的卤素取代使其具有可调的高玻璃化转变温度(220 至 245°C),同时具有 625–800 MV/m 的高击穿强度。p-POClNB 在 200°C 时实现了 7.1 J/cc 的高能量密度,代表了均聚物中报告的最高能量密度。使用分子动力学模拟和超快红外光谱来探测与介电热性能相关的自由体积元素分布和链松弛。随着对位侧链基团从氟变为溴,自由体积元素增加;然而,由于空间位阻,当处于邻位时,相同侧链的自由体积元素较小。在介电常数和带隙保持稳定的情况下,正确设计 PONB 的侧链基团可提高其高密度电气化的热稳定性。