基于此,作者进一步构建了窄带发射,高量子效率和低效率滚动特性的天蓝色OLED。值得注意的是,基于BCZBN-3B的OLED的最大外部量子效率为42.6%,为使用二进制发射层的OLED设备设定了新的效率记录。此外,在1000 cd m -2的亮度下,该设备仍保持30.5%的效率,显示效率较小。
先进纳米材料因其出色的光电特性,受到学术界和工业界越来越多的关注(Liu et al.,2020)。近年来,人们致力于开发高性能纳米材料,这使得其在广泛的光电应用中具有巨大潜力(Kong et al.,2021;Niu et al.,2021),特别是在发光二极管 (LED) 和太阳能电池 (SC) 方面。我们非常高兴地推出这期题为“用于发光二极管和太阳能电池的先进纳米材料”的特刊。本期特刊从不同角度强调了材料-器件研究的主要意义,结合了现代实验方法和理论模拟。我们从这个令人兴奋的领域收集了 10 篇特色文章,涵盖了用于 LED 和 SC 开发的先进纳米材料的新兴概念、策略和技术。简化的有机 LED(OLED)结构和可行的制造工艺在照明中起着关键作用。 Xu 等人结合了超薄非掺杂发射纳米层(0.3 纳米),展示了低效率滚降和结构简单的 OLED。同时,Xie 等人通过使用含硼和氮原子的分子作为客体发射极,开发了溶液处理的蓝色热激活延迟荧光 OLED,其半峰全宽较窄为 32 纳米,获得高色纯度 OLED。另一方面,开发新型溶液处理的空穴注入材料对于高性能 OLED 至关重要。Zhu 等人合成了二硫化钼量子点(MoS 2 QDs)并展示了具有混合聚(3,4-乙烯二氧噻吩)/聚(苯乙烯磺酸盐)(PEDOT:PSS)/QDs 空穴注入层的绿色磷光 OLED。采用PEDOT:PSS/MoS 2 空穴注入层的OLED最大电流效率为72.7 cd A −1,比单一PEDOT:PSS的OLED高28.2%,表明以硫化物QD作为空穴注入层是实现高效OLED的有效方法。GaN基LED也是很有前途的照明和显示设备。Zhang等人从实验和数值两个方面系统地研究了台面尺寸减小对InGaN/GaN LED两个横向维度的影响,为设备小型化提供了见解。而Lu等人制作并展示了各种尺寸的应变减小微型LED,并研究了尺寸对光学特性和量子阱铟浓度的影响。他们的工作为实现微型LED的高功率性能提供了经验法则。另一方面,Liu等人对GaN基LED进行了系统的研究,提出了一种新的方法来降低应变,提高LED的效率。采用氢化物气相外延与激光剥离技术联合制备缓冲层,在双抛光蓝宝石衬底上制备了厚度约为250 μm的2英寸自支撑GaN衬底,为高功率GaN基器件提供了一条途径。
近年来,基于热激活延迟荧光 (TADF) 发射器的高效有机发光二极管 (OLED) 已经实现,但器件寿命需要进一步提高才能用于实际显示或照明应用。在这项工作中,通过调节单层未掺杂器件的光学腔,提出了一种器件设计原理,以实现高效、长寿命的 TADF OLED。通过增加发射层厚度将腔长延长至二阶干涉最大值可拓宽复合区,同时光学输出耦合效率仍然接近较薄的一阶器件。此类器件设计可得到高效稳定的单层非掺杂 OLED,其最大外量子效率为 16%,LT 90 为 452 小时,初始亮度为 1000 cd m − 2 时 LT 50 为 3693 小时,是一阶 OLED 的两倍。进一步证明,OLED 寿命和光强度之间广泛使用的经验关系源自三线态极化子湮没,从而推算出 100 cd m − 2 时的 LT 50 接近 90 000 小时,接近实际背光应用的需求。
Cyano群体以其丰富而多样的重新反应而闻名,因此使其成为访问各种官能团的多功能前体,例如羧酸,醛,胺,胺,胺,胺,胺,四唑,阿沙唑和异唑和异质组。和药品。2加上,氰基覆盖的有机化合物在有机电子和相关技术(例如有机太阳能电池(OSC),或者发光二极管二极管(OLEDS)(OLEDS),非线性光学(NLO)(NLO),光转换剂,光转化剂,有机化的cotals和Phototectes cotal和Photots Phototects和Phototsphtphotox cotal中,有机电子和相关技术的多样化起作用起作用。3因此,通过采用一系列氰化试剂来实现cyanation的重要过程。考虑到环境的影响和毒性,从使用常规的cn型试剂(例如KCN,NACN,Zn(CN)₂和K₄[Fe(CN)₆]到相对更安全的金属硫代盐,从使用常规cn染色试剂进行了明显的过渡。4a,这些试剂中的一些产生化学计量的金属废物和/或释放有害的HCN。为了克服这些多年生问题,已经探索了各种非金属有机氰化试剂,用于氰化含有丙酮氰基氢蛋白,三甲基甲硅烷基氰化物(TMSCN),丙烷基丙烯酸酯,丙烷二酸,乙酸乙酯乙酸乙酯,和异西亚酯。4B此外,硝基苯二烯酸和苯甲氰酸酯也被用作金属催化中的有机溶剂。更重要的是,与广泛研究的C – CN键形成相比,构建X – CN键(X = N,S,O)的探索程度较小。8在过去十年中,许多氰化策略
在材料科学中,开发具有聚集诱导发射的热活化延迟荧光 (TADF) 发射器对于构建高效电致发光器件至关重要。在此,基于高度扭曲的强吸电子受体 (A) 硫芴 (SF) 修饰的酮 (CO) 和芳胺供体 (D),通过简单的合成程序高产率设计和制备了两种具有迷人聚集诱导发射的不对称 TADF 发射器 SFCOCz 和 SFCODPAC。所得分子具有高达 73% 的光致发光量子产率和 0.03 eV 的小单重态-三重态分裂;令人惊讶的是,由这些发射器促进的高效非掺杂和掺杂 TADF 有机发光二极管 (OLED) 显示出 5,598 和 11,595 cd m − 2 的高亮度、16.8 和 35.6 cd/A 的电流效率 (CE)、9.1 和 29.8 lm/W 的功率效率 (PE) 以及 7.5% 和 15.9% 的外部量子效率 (EQE)。这项工作为探索高效的 TADF 发射器提供了一个具体的例子,这对同时促进具有高亮度和出色效率的 TADF OLED 的发展非常有利和令人鼓舞。
智能家居/城市是物联网的重要体现之一,2 涉及各种类型的电子设备,如智能照明系统、3、4 音频视频设备和安全系统。5 其中,语音激活智能照明可以翻译语音命令,实现对灯光的控制。目前,发光二极管 (LED) 和有机发光二极管 (OLED) 已成为智能家居/城市的流行照明系统,6 而具有可调色发射的有机荧光材料是 OLED、7 生物传感、生物成像、8、9 防伪等潜在应用的重要组成部分。 10 与无机荧光粉相比,有机材料具有精确的分子结构,且分子骨架易于修改,有利于获得具有奇妙光物理性质的各种荧光材料,例如稳定的发光自由基、11 颜色可调的发射,以及单线态裂变、12 室温磷光 13 等。14,15 因此,人们致力于开发新型有机荧光材料,以实现具有先进应用的高科技有机电子器件。此外,已经构建了许多用于多色发射以及白光发射的可调荧光发射有机分子,例如比率响应发光材料、16
• Separating, drilling, structuring of glass wafers and panels with different glass materials • Processing of optical devices • Generation of micro fluidic channels for medical, biological, chemical applications in glass, metal or ceramic materials • Laser Lift-Off (LLO) of glass and sapphire substrates for the semiconductor industry, as well as for production of organic light-emitting diodes (OLEDs) and microLED-displays •基于透明玻璃基板的柔性电子系统的激光升级(LLO)•柔性电气系统的激光处理,例如在医疗设备和传感器领域使用卷到卷过程•为流体应用制造微钻,例如喷墨打印喷嘴,只有几微米的钻孔直径和定义的孔几何形状
Aledia成立于2011年,提供了3D照明设备,用于显示各种尺寸。亮度比OLEDS和LCD高2,000倍,更好的图像质量,增加对比度以及生产成本低,因此该公司的产品在全球市场上是独一无二的。3D微胶片受250个专利系列的保护,使Aledia成为提交专利数量的法国第一初创企业。Aledia的3D微胶片的亮度和能源效率最终将智能手机或笔记本电脑的电池需求减少一半。这不仅有助于室外使用,而且还将减少对锂,钴和锰等战略金属的依赖。Aledia还针对许多其他市场,从虚拟现实耳机的微型播放到巨大的视频墙。
作为高清展示领域的后起之秀,研究人员因其宽色范围,1个高色纯度,2个柔性可调性3等,对研究人员进行了广泛研究。自2014年在室温下首次合成的第一颗毛线,因此骨的外部量子效率(EQE)在10年内从不到1%到20%以上。4–6最近,在电荷转运调制,相分布调控和光管理的多重影响下,绿色和红色毛发的均等量超过了25%,而蓝骨的最大eqe也逐渐通过合理设计和有效添加剂的合理设计和结合而逐渐超过18%。9,三种原色的有希望的平衡发展,以及与最先进的有机发光二极管(OLEDS)和量子点发光二极管(QLEDS)等效的工作效率,使得在宽色彩色显示屏和固体照明领域中区分了骨骼。但是,与EQE的快速发展相比,骨的操作稳定性显然落后。高
摘要 近年来,我们看到了基于热激活延迟荧光 (TADF) 的 OLED 在合成和传感与成像应用方面的巨大增长。然而,器件级应用仍然局限于外部量子效率 (EQE) 的不可预测性。虽然涉及 TADF 系统中内部量子效率 (IQE) 和逆系统间窜越 (rISC) 机制途径的理论研究已经得到了相当严格的探索,但对 EQE 的研究仍然缺乏。随着数据驱动分析成为科学的第四种范式(前三种是经验、理论和计算),我们对从文献中获取的 123 个样本的 30 个特征采用了 ML 模型来预测 EQE 最大值。一方面,所使用的模型捕获了器件选择性,但在发色团的发射范围内普遍存在。我们已经证明,梯度提升 (GB) 是一种集成学习模型,能够预测 EQE 最大值,训练/测试集的 r 2 得分为 0.71 ± 0.04/0.84,RMSE 低至 4.22 ± 0.55/2.53。考虑到目前最先进的技术 (SOTA),这是可以预测任何发射范围的 TADF 发色团并描述设备架构影响的最佳模型。我们还进行了特征重要性分析,使这个所谓的黑盒模型可解释。这种分析有助于找出提高 EQE 效率的基本参数。即使学习曲线仍在上升,也证明如果将来提供更多的训练示例,该模型可以改善其预测。所有计算都可以使用易于访问的云计算完成。关键词:机器学习、TADF、OLED、EQE、集成学习