• 中德研讨会:二维半导体光学光谱,厦门,中国,2023 年(因国务院建议退出)• 二维过渡金属二硫属化物,剑桥,英国,2023 年• 牛津大学,凝聚态研讨会,牛津,英国,2023 年• 二维材料中的激子传输,圣塞巴斯蒂安,西班牙,2023 年• 洛斯阿拉莫斯国家实验室,凝聚态研讨会,洛斯阿拉莫斯,2023 年• 哥伦比亚大学,量子材料研讨会,虚拟,2023 年• MRS 春季会议,旧金山,2023 年• 石溪大学,凝聚态研讨会,石溪,2023 年• NIST 材料科学中的量子物质研讨会,虚拟,2023 年• 华盛顿大学圣路易斯分校,凝聚态研讨会,圣路易斯,2022 年• MRS 秋季会议,波士顿, 2022(因病退出)• Packard 研究员会议,蒙特雷,2022 • Psi-k 会议,洛桑,2022 • Gordon 研究会议,陶瓷固态研究,霍利奥克,2022 • Optica 高级光子学大会,马斯特里赫特,2022 • MRS 春季会议,檀香山,2022 • 凯斯西储大学,凝聚态研讨会,虚拟,2022 • CECAM 功能材料激子动力学研讨会,虚拟,2021 • 剑桥大学,电子结构研讨会,虚拟,2021 • 天普大学,物理学讨论会,虚拟,2021 • MRS/Kavli 材料未来研讨会,虚拟,2021 • MRS 春季会议,虚拟,2021 • APS 三月会议,虚拟,2021 • 华盛顿大学西雅图,材料讨论会,虚拟, 2021 • CECAM GW-XL 研讨会,虚拟,2020 • 耶鲁大学,物理学研讨会,纽黑文,2020 • 魏茨曼科学研究所,材料科学研讨会,雷霍维特,2019 • 剑桥大学,凝聚态研讨会,剑桥,2019 • 雷根斯堡大学,凝聚态研讨会,雷根斯堡,2019 • 复旦大学,凝聚态研讨会,上海,2019 • 上海交通大学,凝聚态研讨会,上海,2019 • 圣母大学,物理学研讨会,南本德,2019 • 耶鲁大学,材料科学研讨会,纽黑文,2019 • 俄亥俄州立大学,物理学研讨会,哥伦布,2019 • 斯坦福大学,材料科学研讨会,帕洛阿尔托,2019 • 耶路撒冷希伯来大学,物理学座谈会,耶路撒冷,2019 年 • 宾夕法尼亚大学,物理学座谈会,费城,2019 年 • 加州大学伯克利分校,皮策理论化学研讨会,伯克利,2019 年 • BerkeleyGW 研讨会和会议,奥克兰,2019 年 • APS 三月会议,新奥尔良,2017 年 • 第 27 届电子结构理论最新发展年度研讨会,西雅图,2015 年 在会议和研讨会上发表演讲
灰质(GM)萎缩在多发性硬化症,神经肌炎选择性谱系障碍[NMOSD;抗Aquaporin-4抗体阳性(AQP4+)和 - 阴性(AQP4-)亚型]和髓磷脂少突胶质细胞糖蛋白抗体相关疾病(Mogad)。揭示这些疾病中脑萎缩的发病机理将有助于其鉴别诊断并指导治疗策略。确定多发性硬化症,AQP4+ NMOSD,AQP4-NMOSD和MOGAD中GM萎缩的神经生物学基础,我们进行了虚拟的组织学分析,该虚拟组织学分析将T1加权图像派生的GM Atrophy+ Gene表达与MultiCentRe COLES的患者相关联,与3224患者有关75例AQP4 -NMOSD患者,47例Mogad患者和2169名健康对照组患者。首先,使用Cohen d在具有多发性硬化症,AQP4+ NMOSD,AQP4- NMOSD或MOGAD或MOGAD和健康对照组之间的Cohen D之间确定了整个皮质和皮质下区域的GM间GM萎缩谱。然后将GM萎缩谱分别与从艾伦人脑图集提取的基因表达水平分别在空间上相关。最后,我们使用亚组分析探索了临床功能相关的GM萎缩的虚拟组织学,该分析通过身体残疾,疾病持续时间,复发次数,病变负担和认知功能进行分层。多发性硬化症显示出严重的GM萎缩模式,主要涉及皮层核和脑干。AQP4+ NMOSD显示出明显的GM萎缩的广泛模式,主要位于枕骨Tex和小脑中。AQP4- NMOSD显示出轻度的GM萎缩模式,主要位于额叶和顶叶皮层。mogad显示GM萎缩主要涉及额叶和颞皮质。High expres sion of genes specific to microglia, astrocytes, oligodendrocytes and endothelial cells in multiple sclerosis, S1 pyram idal cells in AQP4+ NMOSD, as well as S1 and CA1 pyramidal cells in MOGAD, had spatial correlations with GM atrophy profile, while no atrophy profile-related gene expression was found in AQP4 - NMOSD。与四种NeuroInflam疾病中的临床纤维相关GM萎缩的虚拟组织学主要指向共享的神经元和内皮细胞。独特的潜在虚拟组织学模式是小胶质细胞,星形胶质细胞和少突胶质细胞,用于多发性巩膜; AQP4+ NMOSD的星形胶质细胞;和摩盖德的少突胶质细胞。神经元和内皮细胞是在这些神经炎症性疾病中共有的靶标。这些发现可能有助于对这些疾病的鉴别诊断,并促进最佳治疗策略的使用。
太初有光。光是美好的。此后不久,人们开始寻求对光的全面理解。虽然出版记录一开始有些零散,但公元前五世纪,希腊哲学家恩培多克勒得出结论,光由从眼睛发出的光线组成。欧几里得在其关于光传播的经典著作《光学》中,使用今天可能被称为局部现实主义的论证对这一观点提出了质疑。欧几里得假设光线是由外部光源发出的。但直到公元 1000 年伊本·海赛姆 (Ibn al-Haytham) 提出这一观点后,这一观点才被确立为科学依据。17 世纪的笛卡尔将光本身的特性描述为“压力”,它通过空间从光源传输到眼睛(探测器)。这个想法后来由惠更斯和胡克发展成为光的波动理论。大约在同一时间,伽森狄提出了相反的观点,即光是一种粒子,牛顿接受了这一观点并进一步发展了这一观点。杨氏 1803 年的双缝实验和菲涅尔的衍射实验普遍认为,光作为粒子和波的不同视角已经得到解决,有利于波动图像。在 19 世纪 60 年代,麦克斯韦方程以一种优雅而令人满意的方式进一步证实了这一结论:预测以光速传播的偏振电磁波。1897 年,J.J. Thomson 发现离散粒子携带负电荷在真空中移动,电磁学的波与流体观由此出现问题。随后在 1900 年,普朗克在“绝望之举”中援引了量化的电磁能量束来推导黑体辐射定律 [2, 3],这一步不仅包含了玻尔兹曼在统计力学中的先前猜想,而且与传统理解背道而驰。它最初被认为是推导的产物,后来得到纠正,但爱因斯坦在 1905 年对光电效应的描述 [4] 中更加认真地对待光量子理论。随后在 1913 年,玻尔援引了能量和角动量的量化来解释在氢-巴尔末系列中观察到的离散光谱发射线。1924 年,德布罗意基于这些想法假设不仅光,而且物质粒子也具有波状特性,这一假设彻底失败了。随后出现了量子光,这真是太棒了。随后,海森堡、玻恩、薛定谔、泡利和狄拉克等一系列发现和进步建立了量子力学的框架。就本书而言,1927 年,狄拉克将电磁场量化,有效地发展了光理论,涵盖了引发整个革命的物理现象。20 世纪 30 年代,首次在单光子水平上直接探测到光。20 世纪 50 年代原子级联光子对源 [5] 的出现及其在 20 世纪 70 年代和 80 年代的使用 [6–9] 使第一个单光子源问世。
叶俊 现任职位 美国商务部国家标准与技术研究所研究员 JILA 研究员,科罗拉多大学博尔德分校 JILA 和物理系兼职教授 网址:https://jila.colorado.edu/Yelabs,电话 303-735-3171,电子邮箱 Ye@jila.colorado.edu 教育背景 科罗拉多大学物理学博士,1997 年;新墨西哥大学物理学硕士,1991 年; 1989 年,上海交通大学应用物理学学士 荣誉与奖项 2024 年,斯德哥尔摩莉泽·迈特纳杰出讲座和奖章 科睿唯安/汤森路透,高被引研究人员(前 1%),每年从 2014 年到 2023 年 上海交通大学数学与物理科学远见奖,2023 年 美国商务部金牌(光学原子钟),2022 年 美国国防部 Vannevar Bush 奖学金,2022 年 德国物理学会 (DPG) 和 OPTICA (OSA) Herbert Walther 奖,2022 年 尼尔斯·玻尔研究所荣誉勋章,2022 年 基础物理学突破奖(与 H. Katori 共享),2022 年 Julius Springer 应用物理学奖,2021 年 墨子量子奖(与 C. Caves 和 H. Katori 共享), 2020 美国物理学会(APS)诺曼·F·拉姆齐奖,2019 美国商务部金牌(原子钟网络),2019 II IEEE 拉比奖,2018 中国科学院外籍院士,2017 美国国家标准与技术研究所雅各布·拉比诺奖,2017 总统等级奖(美国),杰出,2015 美国商务部金牌(光学原子钟),2014 落基山鹰奖,2014 戈登和贝蒂·摩尔基金会研究员奖,2013 美国国家科学院院士,2011 年;澳大利亚科学院 Frew 研究员,2011 年 美国商务部金牌(超冷分子),2011 年 欧洲频率和时间论坛 (EFTF) 奖,2009 年 加州理工学院 Gordon 和 Betty Moore 杰出学者,2008 年 美国物理学会 (APS) II Rabi 奖,2007 年 德国卡尔蔡司研究奖,2007 年 美国光学学会 (OSA) William F. Meggers 奖,2006 年 美国国家标准与技术研究所 Samuel Wesley Stratton 奖,2006 年 德国亚历山大·冯·洪堡基金会 Friedrich Wilhem Bessel 研究奖,2006 年 美国光学学会研究员,2006 年 一等奖(技术创新),Amazing Light: Vision for Discovery (CH Townes),2005 年 美国物理学会研究员,2005 年 Arthur S. Flemming 奖(美国联邦政府科学类),2005美国商务部国家标准与技术研究所研究员,2004 年 总统早期职业科学家和工程师奖,2003 年《技术评论》杂志的 TR100 青年创新者,2002 年 美国商务部金奖(光频率梳),2001 年 美国国家工程院工程前沿研讨会奖,2000 年 美国光学学会(OSA)阿道夫·隆奖章,1999 年 RA 密立根奖奖学金,加州理工学院,1997 年 - 1999 年 大学奖学金,科罗拉多大学博尔德分校,1993 年 - 1994 年 银光奖(优秀本科生奖),荣誉毕业生,交通大学,1987-89 年 命名讲师和教授职位 安娜·I·麦克弗森讲座,麦吉尔大学 2025 年;亚历克斯·达尔加诺讲座,哈佛大学 2024 年;理查德·B·伯恩斯坦讲座,威斯康星大学 2023 年;汉斯·詹森讲座,海德堡大学 2023 年;杰克·穆努希安
MST / Czarske Lab主席的亲爱的朋友和合作伙伴,测量和传感器系统(MST) / Czarske Lab的主席正在庆祝其成立19周年。我们回顾了一年。对我今年的活动报告是一种极大的荣幸和荣幸。获得了几个新项目。也正在进行一个国际项目。特别是LarsBüttner等人开发的激光轮廓传感器对速度和温度测量的商业成功。转移是与尤利希(Jülich)ILA R&D GMBH公司合作进行的。这项在市场上取得成功的创新获得了贝尔瑟德·莱宾创新奖。CZARSKE实验室的学生和员工今年获得了10多个奖项。总共获得了110多个荣誉,奖品和奖项,其中包括最近获得Katrin Philip 10,000欧元的Berta Benz奖。令人高兴的是,从校友(不来梅的安德烈亚斯·费舍尔)收到了ERC。2017年,日本皇帝在东京开设了国会大会ICO-24,德累斯顿被选为下届世界大会。经过3年的重密集式准备,在Optica,Spie,IEEE,EOS,DGAO,Zeiss,Tu Dresden,ICO,Owls和其他合作伙伴的支持下,由于不幸的是,国会无法举行国会。它被推迟了一年,然后在ICO大会关于数字格式的大会进行了深入的讨论后再次推迟。我们感谢所有支持者和工作人员,尤其是Nektarios Koukourakis和Lars Buettner。2022年,面对面的世界大会ICO-25-owls-16在国际意外的领域和质量中取得了巨大的成功。来自55个国家(非洲,美国,亚洲,澳大利亚,惊人的欧洲)的55个国家的与会者以及具有3个诺贝尔奖获得者的非凡质量密度使我们激动。此外,应分别感谢迈克尔·普菲弗(Michael Pfeffer)和沃尔夫冈·奥斯滕(Wolfgang Osten)对现场组织和科学计划的承诺。有关世界大会ICO-25-OWLS-16-DRESDEN-GERMANY-5-9- 9月2022年的信息,可以在https://wwwww.ico25.org的网站上找到以“光线为前进的社会”的主题。首先,我们只从光遗传学开始,然后与CRTD的遗传实验室进行非常成功的项目合作。今年发表了高质量论文,例如在生命科学联盟中,标题为“通过全息光遗传学跟踪人类干细胞衍生的神经元网络中的连通图”。用于多模纤维传输的新方法用于物理层安全性。使用现代波前塑形技术对纤维或组织中的散射过程的控制为应用的新方向开辟了新的方向。Nektarios Koukourakis博士和Jiawei Sun博士开创了细胞断层扫描,最近获得了大自然家族的出版物。 也以第二代量子技术获得了项目。Nektarios Koukourakis博士和Jiawei Sun博士开创了细胞断层扫描,最近获得了大自然家族的出版物。也以第二代量子技术获得了项目。人工智能,机器学习和深度学习正在扮演越来越重要的角色。深度神经网络可以通过无透镜纤维内窥镜来学习光传播,以分类人脑肿瘤。使用超薄内窥镜的恶性肿瘤和良性肿瘤的这种新分化方法有望实时进行晚期医学诊断。来自BMBF的重要资金是由Enowa I,Enowa II,Korona,Quiet,6glife,Gobio等项目实现的。我们喜欢强调国际网络,包括:中国廷华大学Liangcai Cao;奥地利Tu Graz的JakobWoisetschläger; WACLAW URBANCZYK,KINGA×OVENACZ,WROCLAW UNIV。科学技术;中国技术大学的Jinping Qu;亚当·皮尔斯(Adam Pierce),加州大学伯克利分校; Zeyu Gao,Ping Yang,中国科学院,成都; Danfeng Lu,中国西安技术大学,“自适应光学”,访问研究员(2023-2024)。 此外,合作社与美国耶鲁大学一起运行;美国斯坦福大学;科学技术;中国技术大学的Jinping Qu;亚当·皮尔斯(Adam Pierce),加州大学伯克利分校; Zeyu Gao,Ping Yang,中国科学院,成都; Danfeng Lu,中国西安技术大学,“自适应光学”,访问研究员(2023-2024)。此外,合作社与美国耶鲁大学一起运行;美国斯坦福大学;
光学通信集成电路的设计涉及各种技术,以提高性能,鲁棒性和功率效率。本文讨论了使用不同拓扑结构的无电感器,可变带宽和功率可观的光接收器前端的发展。它突出了校准时钟和数据恢复系统以最大程度地减少能息影响的重要性。该设计还提出了在65 nm CMOS工艺中制造的高增益宽带逆变器的cascode变速器放大器。多个带宽增强技术用于改善放大器的性能。此外,本文提出了一种低功率医疗设备和高通用性电子设备,该设备几乎没有功耗。20-Gb/s时钟和数据恢复电路的设计结合了用于低功率耗散的高速操作的注射锁定技术。频率监控机制可确保VCO固有频率和数据速率之间的密切匹配。此外,该文章介绍了在0.13 UM CMOS过程中制造的10 GB/S爆发模式变速器放大器(BMTIA),该过程已用于被动光网(PONS)中的爆发模式接收器。SIGE BICMOS中155-MB/S-4.25-GB/S激光驱动器的设计可在具有分段的驱动器切片方案的广泛调制电流上保持动态性能。CDR IC具有添加的Demux功能,并在尖端生产技术中实现。通过引用有关该主题的著名论文和书籍,讨论了硅光子学的最新进展。B.最后,本文讨论了CMOS光学收发器的设计,该收发器符合IEEE802.3AH PX20标准的规格,并在/SPL PlusMn/0.4 DBM和/splplusmn/0.6 db中成功抑制了宽度从-40到100/spl spl deg/c/c。第一本关于可编程光子学的全面书籍提供了对基本原理,架构和潜在应用的深入概述。几项重要的研究表明,用于深度学习,量子信息处理和其他用途的大规模可编程光子电路。最近的一项研究提出了基于氮化硅波导的8×8可编程量子光子处理器,表现出低光损失,对单个光子上的线性量子操作有吸引力(Taballione等,2018)。这项成就引发了人们兴趣探索可编程光子电路处理微波信号的功能。研究人员在开发通用离散的傅立叶光子光子集成电路架构(Hall&Hasan,2016),玻璃芯片上可重构的光子学(Dyakonov等,2018)和光学处理器实现的神经网络(Shokraneh等人,2019年)方面取得了重大进展。这些进步为创新应用打开了大门,例如具有DSP级灵活性和MHz波段选择性的光子RF过滤器(Xie等,2017)。大规模硅量子光子学的发展也使实施了任意的两Q量处理(Qiang et al。,2018)和具有集成光学的多维量子纠缠(Wang等,2018)。pai,S。等。IEEE J. SEL。IEEE J. SEL。此外,还使用可重构光子电路来生成,操纵和测量纠缠和混合物(Shadbolt等,2012)。此外,研究的重点是使用纯正的可编程网格(Annoni等,2017)进行解散光,并实施了综合透明检测器,这些透明检测器可以测量光强度而不诱导额外的光损失。这些可编程光子电路中的这些进步为量子计算,电信及以后的创新应用铺平了道路。任意前馈光子网络的并行编程。顶部。量子电子。25,6100813(2020)。 Reck,M.,Zeilinger,A.,Bernstein,H。J. &Bertani,P。任何离散统一操作员的实验实现。 物理。 修订版 Lett。 73,58–61(1994)。库ADS CAS CAS PubMed Google Scholar Wang,M.,Alves,A。R.,Xing,Y。 &Bogaerts,W。耐受性,宽带可调2×2耦合器电路。 选择。 Express 28,5555–5566(2020)。插图广告PubMed Google ScholarPérez-López,D.,Gutierrez,A.M.,Sánchez,E. 使用双驱动方向耦合器的集成光子可调基本单元。 选择。 Express 27,38071(2019)。插图广告PubMed Google Scholar Choutagunta,K.,Roberts,I.,Miller,D。A. &Kahn,J。M.在直接检测模式 - 划分链接链路上适应Mach-Zehnder网状均衡器。 J. 光。 技术。 38,723–735(2020)。插图广告Google Scholar Miller,D。A. J. Opt。 Soc。25,6100813(2020)。Reck,M.,Zeilinger,A.,Bernstein,H。J. &Bertani,P。任何离散统一操作员的实验实现。 物理。 修订版 Lett。 73,58–61(1994)。库ADS CAS CAS PubMed Google Scholar Wang,M.,Alves,A。R.,Xing,Y。 &Bogaerts,W。耐受性,宽带可调2×2耦合器电路。 选择。 Express 28,5555–5566(2020)。插图广告PubMed Google ScholarPérez-López,D.,Gutierrez,A.M.,Sánchez,E. 使用双驱动方向耦合器的集成光子可调基本单元。 选择。 Express 27,38071(2019)。插图广告PubMed Google Scholar Choutagunta,K.,Roberts,I.,Miller,D。A. &Kahn,J。M.在直接检测模式 - 划分链接链路上适应Mach-Zehnder网状均衡器。 J. 光。 技术。 38,723–735(2020)。插图广告Google Scholar Miller,D。A. J. Opt。 Soc。Reck,M.,Zeilinger,A.,Bernstein,H。J.&Bertani,P。任何离散统一操作员的实验实现。物理。修订版Lett。 73,58–61(1994)。库ADS CAS CAS PubMed Google Scholar Wang,M.,Alves,A。R.,Xing,Y。 &Bogaerts,W。耐受性,宽带可调2×2耦合器电路。 选择。 Express 28,5555–5566(2020)。插图广告PubMed Google ScholarPérez-López,D.,Gutierrez,A.M.,Sánchez,E. 使用双驱动方向耦合器的集成光子可调基本单元。 选择。 Express 27,38071(2019)。插图广告PubMed Google Scholar Choutagunta,K.,Roberts,I.,Miller,D。A. &Kahn,J。M.在直接检测模式 - 划分链接链路上适应Mach-Zehnder网状均衡器。 J. 光。 技术。 38,723–735(2020)。插图广告Google Scholar Miller,D。A. J. Opt。 Soc。Lett。73,58–61(1994)。库ADS CAS CAS PubMed Google Scholar Wang,M.,Alves,A。R.,Xing,Y。 &Bogaerts,W。耐受性,宽带可调2×2耦合器电路。 选择。 Express 28,5555–5566(2020)。插图广告PubMed Google ScholarPérez-López,D.,Gutierrez,A.M.,Sánchez,E. 使用双驱动方向耦合器的集成光子可调基本单元。 选择。 Express 27,38071(2019)。插图广告PubMed Google Scholar Choutagunta,K.,Roberts,I.,Miller,D。A. &Kahn,J。M.在直接检测模式 - 划分链接链路上适应Mach-Zehnder网状均衡器。 J. 光。 技术。 38,723–735(2020)。插图广告Google Scholar Miller,D。A. J. Opt。 Soc。73,58–61(1994)。库ADS CAS CAS PubMed Google Scholar Wang,M.,Alves,A。R.,Xing,Y。&Bogaerts,W。耐受性,宽带可调2×2耦合器电路。选择。Express 28,5555–5566(2020)。插图广告PubMed Google ScholarPérez-López,D.,Gutierrez,A.M.,Sánchez,E.使用双驱动方向耦合器的集成光子可调基本单元。选择。Express 27,38071(2019)。插图广告PubMed Google Scholar Choutagunta,K.,Roberts,I.,Miller,D。A.&Kahn,J。M.在直接检测模式 - 划分链接链路上适应Mach-Zehnder网状均衡器。J.光。技术。38,723–735(2020)。插图广告Google Scholar Miller,D。A. J. Opt。 Soc。38,723–735(2020)。插图广告Google Scholar Miller,D。A.J. Opt。Soc。B.使用自配置网络分析和生成多模光场。Optica 7,794–801(2020)。插图广告Google Scholar Morizur,J.-F。等。可编程的统一空间模式操作。am。A 27,2524(2010)。插图广告Google Scholar Labroille,G。等。基于多平面光转换的高效和模式选择性空间模式多路复用器。选择。Express 22,15599–15607(2014)。饰物ADS PubMed Google Scholar Tanomura,R.,Tang,R.,Ghosh,S.,Tanemura,T。&Nakano,T。使用多层方向耦合器使用多层方向性耦合器。J.光。技术。38,60–66(2020)。库ADS CAS Google Scholar Miller,D。A. B. 设置干涉仪的网格 - 反向局部光干扰方法。 选择。 Express 25,29233(2017)。库ADS CAS CAS Google Scholar Li,H。W.等。 校准和量子光子芯片的高保真度测量。 新J. Phys。 15,063017(2013)。插图广告Google Scholar Cong,G。等。 通过细菌觅食算法对通用硅光子电路进行任意重新配置,以实现可重新配置的光子数字到Analog转换。 选择。 Express 27,24914(2019)。库ADS CAS CAS PubMed Google ScholarPérez,D。等。 多功能硅光子信号处理器核心。 nat。 社区。 8,1–9(2017)。 此外,传统的CMOS制造方法和材料的使用导致了300mm硅光子学的重大发展(Baudot等,2017)。38,60–66(2020)。库ADS CAS Google Scholar Miller,D。A.B.设置干涉仪的网格 - 反向局部光干扰方法。选择。Express 25,29233(2017)。库ADS CAS CAS Google Scholar Li,H。W.等。校准和量子光子芯片的高保真度测量。新J. Phys。15,063017(2013)。插图广告Google Scholar Cong,G。等。 通过细菌觅食算法对通用硅光子电路进行任意重新配置,以实现可重新配置的光子数字到Analog转换。 选择。 Express 27,24914(2019)。库ADS CAS CAS PubMed Google ScholarPérez,D。等。 多功能硅光子信号处理器核心。 nat。 社区。 8,1–9(2017)。 此外,传统的CMOS制造方法和材料的使用导致了300mm硅光子学的重大发展(Baudot等,2017)。15,063017(2013)。插图广告Google Scholar Cong,G。等。通过细菌觅食算法对通用硅光子电路进行任意重新配置,以实现可重新配置的光子数字到Analog转换。选择。Express 27,24914(2019)。库ADS CAS CAS PubMed Google ScholarPérez,D。等。多功能硅光子信号处理器核心。nat。社区。8,1–9(2017)。 此外,传统的CMOS制造方法和材料的使用导致了300mm硅光子学的重大发展(Baudot等,2017)。8,1–9(2017)。此外,传统的CMOS制造方法和材料的使用导致了300mm硅光子学的重大发展(Baudot等,2017)。单层整合的多层硅二硅硅波导平台的最新进展已使三维光子电路和设备的开发(Sacher等,2018)。AIM Photonics MPW已成为一种高度可访问的技术,用于快速的光子综合电路(Wahrenkopf等,2019)。此外,具有紧凑的平面耦合器,跨言式缓解和低跨界损失的多平面无定形硅光子的发展进一步扩大了光子整合电路的能力(Chiles等,2017)。在热控制方面,已经提出了对硅光子电路的热控制的各种加热器架构,包括用于CMOS兼容的硅热硅热电器(Van Campenhout等,2010)的NISI波导加热器(Van Campenhout等,2010),并取消热跨与光的跨核电效应,对光电综合通道效应(MilanizaDeh et al。)。电流效应也在硅中进行了研究,并在光学调节剂中进行了重要应用(Reed等,2010)。此外,用于集成光子学的硅氧核平台的开发使创建具有降低光学损失的光子设备(Memon等,2020)。压电调谐的氮气环谐振器也已被证明,并具有潜在的光子整合电路中的应用(Jin等,2018)。此外,使用压电铅锆钛酸钛酸盐(PZT)薄膜开发了应力调节剂,从而可以创建可调光子设备(Hosseini等,2015)。Wuttig等。派兰多·赫兰兹(Errando-Herranz)等。Quack等。使用液晶壁板还可以广泛调整硅在隔离器环谐振器中,并具有潜在的光子整合电路中的应用(De Cort等,2011)。此外,使用具有液晶浸润的SOI插槽波导开发了数字控制的相变,从而可以创建可调光子设备(Xing等,2015)。最后,在硅硅酸盐和纳米结构的钛酸钡中已证明了大型的效应,并在光子综合电路中具有潜在的应用(Abel等,2019)。开发了用于非易失性光子应用的相变材料。研究了启用MEMS的硅光子集成设备和电路。研究了启用了MEMS硅光子集成设备和电路的性能。通过通用可编程光子电路降低原型光子应用的成本是一个不断增长的领域。几项研究探索了这些电路在各个领域的潜力,包括硅光子系统和IIII-V-ON-ON-ON-ON-ON-ON-ON-ONICON整合。研究人员一直在开发技术,例如用于控制大型硅光子电路的热光相变,以及用于硅光子平台中高速光学互连的活性组件。这些进步可能有可能使创建更有效,更可扩展的光子系统。此外,研究还研究了III-V材料在硅底物上的整合,这可能会导致改善的性能和降低光子学应用的成本。研究人员还一直在探索通过创新来提高光学互连效率的方法,例如基于转移打印的III-V-n-Silicon分布式反馈激光器的集成。最近的工作集中在开发可编程的光子电路上,这些电路可以针对不同的应用进行重新配置,从而有可能减少原型制作所需的成本和时间。这些电路可用于各种光子系统,从高速光学互连到量子技术。还研究了这些发展的经济可行性,研究人员探索了通过使用通用可编程光子电路来降低成本的方法。此外,一些研究已经深入研究了新的应用,例如全光信号处理和光学证明,突出了各个领域的光子学的巨大潜力。改写文本:对光子相关的研究论文的调查和来自信誉良好的来源的文章揭示了对微波信号处理的可编程光子组件的重视。值得注意的是,最近的研究集中在使用集成波导网格的可重构光学延迟线和真实时延迟线的发展。此外,人们对无线电纤维技术,激光雷达系统体系结构和量子计算应用的兴趣越来越大。光子学与其他技术的整合已导致在诸如光谱传感,激光多普勒振动法和光束束成形和转向等领域的显着进步。尽管最初令人兴奋,但身体和经济因素阻碍了进步。此外,对光子生物传感器,硅光子电路和六束同伴激光多普勒振动的研究表明,在各种应用中的准确性和效率提高了潜力。最近的研究还强调了可编程超导处理器和量子机学习算法的重要性。已经探索了使用集成波导网格的可重构光学延迟线和真实时延迟线的开发,重点是提高信号处理能力。用于光谱传感的硅光子电路和六光同源性激光多普勒振动法在各种应用中显示出令人鼓舞的结果。量子计算研究继续前进,最近的研究表明使用可编程超导处理器进行量子至上。光子学与其他技术的集成为改进信号处理,传感和计算功能开辟了新的可能性。Ivan P. Kaminow的2008年Lightwave Technology Journal of Lightwave Technology文章重点介绍了自1969年以来光学综合电路的希望。最近的商业发展可能标志着光子摩尔定律曲线的开始。关键里程碑包括从可见的LED到III-V光子综合电路(图片)的过渡。审查了显着的进步,例如大规模INP发射器和接收器图片,速度高达500 GB/s和1 TB/s。此外,自从CMOS晶圆晶片级集成以来,硅光子电路包装已显着改善。专家通过通用的基础方法预测了微型和纳米光子学的革命,与三十年前的微电子中类似创新的影响相呼应。硅光子学有望为从电信到生物医学领域的各种应用提供低成本的光电溶液。