➢ 半导体封装用玻璃基板所要求的特性及玻璃中介层的发展趋势! ➢ 三大半导体厂商的背面电源技术优缺点、其经营策略、量产计划如何? ➢ 晶圆代工厂、EMS、无晶圆厂、OSAT、半导体制造设备相关公司的经营战略! ➢ 采用小芯片的二维和三维异质集成的特点和应用! ➢ 2.5D、3D封装所需的材料特性!重新分布层、封装材料、底部填充材料等等! ➢ FOWLP/PLP制造工艺类型、相关公司以及贴装封装元件的要求! ➢ 全球 HBM 市场份额争夺战愈演愈烈,日本企业面临巨大商机! ➢ 探讨了底部填充所需的性能和技术趋势、市场预测以及各企业的市场份额! ➢ 设计和质量要求满足芯片在镀铜布线制造中的需求! ➢ 探讨了混合键合的方法、优势和挑战以及各公司产品的特点和技术策略!
摘要 — 半导体行业正在经历从传统的缩小器件尺寸和降低成本方法的重大转变。芯片设计人员积极寻求新的技术解决方案,以提高成本效益,同时将更多功能融入硅片封装中。一种有前途的方法是异构集成 (HI),它涉及先进的封装技术,使用最合适的工艺技术集成独立设计和制造的组件。然而,采用 HI 会带来设计和安全挑战。要实现 HI,先进封装的研究和开发至关重要。现有研究提出了先进封装供应链中可能存在的安全威胁,因为大多数外包半导体组装和测试 (OSAT) 设施/供应商都在海外。为了应对日益增长的半导体需求并确保半导体供应链的安全,美国政府正在大力努力将半导体制造设施转移到国内。然而,美国的先进封装能力也必须得到加强,才能完全实现建立安全、高效、有弹性的半导体供应链的愿景。我们努力的目的是找出美国先进封装供应链中可能存在的瓶颈和薄弱环节。索引词 — 先进封装、半导体供应链、先进封装供应链、硬件安全和保障、安全异构集成。
实现第五代新无线电 5G (NR) 或简称 5G 技术的驱动力包括传输大数据速率以及对更可靠连接、更快响应时间(低延迟)和更好覆盖范围的需求。在毫米波应用中,信号丢失变得至关重要,设计挑战也变得更加复杂。除了新兴的 5G 智能手机外,其他以极高频率运行且需要小尺寸的应用还包括可穿戴设备、小型基站、安全摄像头、自动驾驶汽车中的雷达装置以及众多物联网 (IoT) 设备。根据 Gartner, Inc. 的市场研究,到 2023 年,每年将生产超过 10 亿台毫米波装置。借助 AiP 技术,天线不再是无线设备中的单独组件,而是与射频 (RF) 开关、滤波器和放大器集成在 SiP 中。根据咨询公司 Yole Développement 的数据,预计到 2023 年,整个射频前端 (RFFE) 模块 SiP 市场规模将达到 53 亿美元,复合年增长率 (CAGR) 为 11.3%(图 1)。另一项市场预测显示,到 2025 年,5G 毫米波市场规模将增长 10 倍 [1]。支持基站和小型蜂窝基础设施将需要大量的半导体封装和系统集成支持。外包半导体组装和测试 (OSAT) 供应商通常最适合投资封装
这项研究旨在通过密集的模拟器训练来评估微创手术(MIS)缝合技能的增强,以将各种实验测量的运动参数与已建立的评分系统进行比较,并确定可能对实现能力至关重要的运动参数。55名儿童内窥镜手术的强化实践过程的参与者被包括在内。训练从每天的单手术结练习开始,在最后一天进行了执行,类似于食管闭锁修复的吻合术。通过成功完成吻合术来衡量训练效果。通过配备专门传感器的模拟器评估了技能,该模拟器将数据转换为一组仪器运动参数。此外,两名研究人员使用录制视频和对技术技能的客观结构化评估(OSAT)问卷进行了评估。每天都会注意到单手术结的显着提高,特别是在指标上:时间,运动经济,平稳性,加速度,仪器活动和整体评分。在自动化和人类评估之间观察到了强相关性。48/55参与者在最后一天尝试吻合,其中70%(34/48)取得了成功(中位数5.1/10,只有16.7%的得分高于7/10)。涵盖的运动经济和仪器距离是吻合成功的最相关的预测指标。密集的模拟培训显着提高了内窥镜缝合技巧。
UAD Flat No-Leads(QFN)半导体软件包代表了最稳定的芯片载体类型之一,预计随着原始设备制造商(OEMS)努力将更多的信号处理放入较小的空间中,它们可以继续生长。由于它们的低调,凝结的外形,高I/O和高热量耗散,因此它们是芯片组合固结,微型化和具有高功率密度的芯片的流行选择,尤其是对于汽车和RF市场。与任何软件包一样,可靠性至关重要,并且由于其广泛接受,OEM,集成设备制造商(IDM)以及外包组装和测试供应商(OSAT)的需求继续提高QFN的可靠性。处理铜铅框架表面,增强霉菌复合粘附并减少芯片包装中的分层的化学过程,可提高QFN的可靠性。这些化学过程会导致铜表面的微型粗糙,同时沉积热稳健的膜,从而增强了环氧封装剂与铅框架表面之间的化学键。通常,这种类型的过程可以可靠地提供JEDEC MSL-1性能。虽然这种化学预处理过程在分层方面提供了改进的性能,但它可以为铅框架打包器带来其他挑战。增加表面粗糙度放大了模具的趋势附着在流血(环氧树脂流出或EBO)上,从而导致充满银色的粘合剂,以分离和负面影响包装质量和可靠性。此外,在铅框架表面出血的任何环氧树脂都可以干扰其他下游过程,例如下键或霉菌化合物粘附。
导致基板短缺的原因是什么? E. Jan Vardaman,TechSearch International, Inc. 总裁兼创始人 意外需求、全球供应链不确定性、事故和天气相关事件导致半导体短缺。所有类型的基板都供不应求;包括芯片级封装 (CSP) 和倒装芯片球栅阵列 (FC-BGA) 的基板。尽管未来几年将有一些产能扩张,并且新工厂计划在 2024-25 年上线,但预计至少两到三年内情况不会改善。一些公司正在考虑不使用基板的替代品,包括扇出型晶圆级封装 (FO-WLP)。采用 RDL 来减少基板设计的层数也在考虑之中。 导致 FC-BGA 需求的原因是什么?使用积层材料制造的 FC-BGA 基板需要支持用于服务器、笔记本电脑和台式机的 CPU、AI 加速器、电信中的 ASIC、HDTV、DSP 和 FPGA 等媒体芯片等应用的细间距凸块芯片。与该行业的许多领域不同,FC-BGA 的短缺并不是由疫情造成的。虽然对服务器、笔记本电脑和台式机的需求有所增加,但对额外基板制造能力的需求主要是由于某些领域的更大尺寸和增加的层数。ASIC 具有多种尺寸,常见的基板采用 4-2-4 积层结构。虽然许多应用使用 2-2-2 积层结构,但其他应用使用更大的数量和更大的尺寸。Apple 的 M1 采用 3-2-3 积层结构(见图 1)。服务器 CPU 的体积和层数增加是基板容量需求增加的主要原因。高端服务器 CPU 预计将使用最大 100mm x 100mm 的主体尺寸,核心每侧有 10 个构建层。在高端,高端网络交换机封装的边长在 70 mm 到 90 mm 之间。OSAT 报告称,他们预计到 2023 年将出现对 100mm x 100mm 基板的需求。正在考虑更大的主体尺寸。最小层数为每侧六或七层构建层,即将出现一些八层和九层构建层的设计。虽然单位产量较低,但由于基板大而复杂,因此对面板的要求很高,会影响面板上的布局以及面板产量。预计共封装光学器件将使用更大的 110 mm x 110 mm 主体尺寸。硅中介层呢?许多应用程序不是都将它们用于封装吗?是的,硅中介层用于 AI 加速器、高性能 FPGA 应用和高端网络交换机,但它们连接到层压积层基板上以完成封装。硅中介层通过焊球连接到层压基板上,通常间距为 130 µm。典型的 AI 加速器尺寸为 55 毫米 x 55 毫米。随着中介层尺寸的增加,需要更大的积层基板。台积电提出了超大的 2,500 平方毫米硅中介层,将