摘要 - 为了充分利用移动操纵机器人的功能,必须在大型未探索的环境中自主执行的长途任务。虽然大型语言模型(LLMS)已显示出关于任意任务的紧急推理技能,但现有的工作主要集中在探索的环境上,通常集中于孤立的导航或操纵任务。在这项工作中,我们提出了MOMA-LLM,这是一种新颖的方法,该方法将语言模型基于从开放式摄影场景图中得出的结构化表示形式,随着环境的探索而动态更新。我们将这些表示与以对象为中心的动作空间紧密地交织在一起。重要的是,我们证明了MOMA-LLM在大型现实室内环境中新型语义交互式搜索任务中的有效性。最终的方法是零拍摄,开放式摄影库,并且可以易于扩展到一系列移动操作和家用机器人任务。通过模拟和现实世界中的广泛实验,与传统的基线和最新方法相比,我们证明了搜索效率的显着提高。我们在http://moma-llm.cs.uni-freiburg.de上公开提供代码。
1。分析您选择的国家/地区的环境的文化建构2。比较和对比具有不同环境质量水平的国家的环境感知3。批判性地评估了一个国家和不同国家内部的社会的发展状况和环境问题的类型。4。确定一个地区的社会人口统计学和工业特征,并将其与该地区的环境问题相关联?5。显示自然资源使用与不断变化的社区人口动态之间的任何关系7。评估人们的自然资源使用模式及其参与自然资源保护的可能性8。在给定的区域9.分析对人口或利益相关者环境资源的态度,知识和价值观,以及公众愿意为资源保护做出哪些权衡。10。确定跨社会成员的资源的访问,并建议采取公平共享资源或相关利益的措施。11。选择环境政策/法规,并确定其对社会的影响。暗示性读数1。Cárdenas,J.C.,2009。环境和开发实验。资源经济学年度评论,1(1),第157-82页。Chokkan,K.B.,Pandya,H。&Raghunathan,H。(eds)。 2004。 了解环境。 Sagar出版印度列兵。 Ltd.,新德里。 3。 Elliot,D。2003。 能源,社会和环境,可持续未来的技术。 30 Routledge出版社。 4。Loris,A.A.R。 ed。,2021。 环境与发展:挑战,政策和实践。 Springer自然。 5。 leopold,A。 1949。 土地道德。 pp。 201-214。 芝加哥。 美国。Chokkan,K.B.,Pandya,H。&Raghunathan,H。(eds)。2004。了解环境。Sagar出版印度列兵。 Ltd.,新德里。 3。 Elliot,D。2003。 能源,社会和环境,可持续未来的技术。 30 Routledge出版社。 4。Loris,A.A.R。 ed。,2021。 环境与发展:挑战,政策和实践。 Springer自然。 5。 leopold,A。 1949。 土地道德。 pp。 201-214。 芝加哥。 美国。Sagar出版印度列兵。Ltd.,新德里。3。Elliot,D。2003。能源,社会和环境,可持续未来的技术。30 Routledge出版社。4。Loris,A.A.R。 ed。,2021。 环境与发展:挑战,政策和实践。 Springer自然。 5。 leopold,A。 1949。 土地道德。 pp。 201-214。 芝加哥。 美国。4。Loris,A.A.R。ed。,2021。环境与发展:挑战,政策和实践。Springer自然。5。leopold,A。1949。土地道德。pp。201-214。芝加哥。美国。美国。
■ 见下文,以及目标 4 的进展情况 ○ 提供第 1 阶段 CBE 课程的公开记录,○ 提供专业发展以支持教师完成第 1 阶段 CBE 课程。○ KRHS - 正在制定学习目标和绩效量表,将于 22-23 学年结束前完成。○ KRMS - 第 1 阶段的大部分领域已经完成,少数科目修改了以前的工作。○ 小学 - 第 1 阶段的大部分领域已经完成,少数科目修改了以前的工作。○ 可公开访问的 Atlas Rubicon 链接在此处提供:(https://kearsarge-public.rubiconatlas.org/home)○ 信息通信技术 (ICT) - 已为 K-12 开发了 ICT 第 1 阶段,包括能力、学习目标和绩效量表。 ○ 3 月 31 日和 5 月 18 日为专业发展日,专门用于第 1 阶段和第 2 阶段 CBE 工作 ● 开发 CBE 课程的第 2 阶段(学生学习的评估和报告): ○ 提供专业发展和适当的资源,为教师开发和实施 CBE 课程的第 2 阶段做好准备。 ○ 领导力书籍研究(“公平评分”);与 Carolyn Eastman 一起参加“学习者画像”研讨会;与 NHLI 的 Brian Stack 一起参加 CBE 评估研讨会。 ○ 对教师进行质量绩效评估模型培训,作为指导本地设计常见评估和使用验证协议的工具 ○ 完成书籍阅读并在领导团队中讨论 ○ 以草稿形式完成学习者画像;两次 NHLI 研讨会,POL 团队出席,确定了基本属性。 ○ 学校董事会于 2023 年 4 月 20 日介绍 POL 的状态。
战略目标声明:布坎南社区学校将加深我们的系统学术和社会情感支持,以确保整个孩子的健康,安全和福祉,认识到我们的学习者需要平衡学术,身体,社会,社交和情感的需求。优先目标:o通过与MTSSS等系统的社区合作伙伴的合作,为具有识别身体,社交/情感,行为和心理健康需求的学生制定计划。o在该地区的每所学校中建立所需的气候和文化,通过使用诸如积极行为干预和支持(PBIS)等框架(PBIS)
可再生能源:利用自然的力量 可再生能源对于应对气候变化和确保可持续的未来至关重要。这些能源利用自然过程来发电,而不会耗尽有限的资源或排放有害的温室气体。 II. 一种重要的可再生能源是太阳能,它利用光伏电池或太阳能热系统利用阳光。光伏电池将阳光直接转化为电能,而太阳能热系统则使用镜子或透镜来聚集阳光并产生热量,然后可用于生产电能或热水。
● 编程作业 (25 %) 将会有几项编程作业,涉及 OO 编程、OO 设计和 UML 图。所有作业都是个人作业。逾期的作业将不被接受。 ● 测验 (10 %) 每章之后都会有简短的测验。这些测验的目的是鼓励学生阅读课程材料并理解概念。这些测验的目的是帮助学生更好地理解概念并将其应用于作业以及为期中和期末考试做准备。 ● 项目 (20 %) 每学期最后一个月,每个小组由 3 名成员组成一个小组项目,涉及 OO 设计和 GUI 编程。 ● 期中和期末(各占 20 %) 将会有一次期中考试和一次期末考试,包括选择题和书面答案。问题可以来自测验、课堂笔记、幻灯片、作业和课堂讨论。 ● 课堂参与 (5 %) 为鼓励参与,您的期末成绩的 5% 将来自您的参与。请注意,参与并不等于出席。
您将与队友一起完成项目的政策备忘录部分。您将有课堂时间来为每份备忘录制定工作计划。团队合作可能是一项挑战,尤其是在日程繁忙的情况下。我希望每个人都能按比例为最终项目做出贡献,但承认不同的团队可能会有所不同。为了了解您的团队如何运作,在提交每份备忘录后,您还将提交一份调查,您将自我评分并简要描述您对备忘录的贡献。这将通过画布调查提交。调查将询问:“您对获得的成绩有多大信心反映您的个人努力和贡献?”,“您能多好地回答有关备忘录内容的个人问题?”,“您对备忘录的哪些贡献最自豪?”“完成备忘录后,您是否有任何未解决的知识空白,希望在课堂上解决?”如果团队成员之间出现问题,请在与您的队友讨论挑战后联系斯科特博士。
摘要。通过互补感应方式整合各种表示形式对于自主驾驶中的强大场景解释至关重要。近年来,融合视觉和范围数据的深度学习体系结构具有先进的2D和3D对象检测。但是,这些方式在不利的天气或照明条件下通常会降解,从而导致性能下降。虽然已经开发了域适应性甲基元素来弥合源域和目标域之间的缝隙,但由于源和目标域之间的固有差异,它们通常会缺乏。此差异可以在数据的不同分布和不同特征空间的不同分布中表现出来。本文介绍了一个全面的域自适应对象检测框架。通过深度转移学习开发,该框架旨在从标记的透明天气数据中稳健地概括到无标记的不良天气条件,从而增强了基于深度学习的对象检测模型的性能。创新的斑块熵融合模块(PEFM)是我们方法的核心,该方法动态整合了sens-sor数据,强调关键信息并最大程度地减少了背景干扰。这进一步补充了一种新型的加权决策模块(WDM),该模块(WDM)根据其在特定环境条件下的功效来调整不同传感器的贡献,从而优化了检测准确性。此外,我们在转移学习过程中集成了域对齐损失,以确保有效的域适应性通过将特征图差异定于清晰和不利天气数据集之间的差异。我们评估了不同数据集的模型,包括Exdark(单峰),CityScapes(单峰)和密集(Mul-timodal),在我们评估的时间点,它在所有数据集中排在所有数据集中。
基于扩散的生成模型在合成和操纵图像具有巨大的图像方面表现出了令人鼓舞的结果,其中文本到图像模型及其后续作品在学术界和行业中都具有很大的影响。编辑真实图像时,用户通常希望对不同元素具有直观而精确的控制(即对象)组成图像,并不断地操纵它们。我们可以根据图像中的单个观察的控制级别对现有的图像编辑方法进行分类。一条工作涉及使用文本提示来操纵图像[2,15,24,27]。由于很难与文本同时描述多个对象的形状和外观,因此在对象级别上对细粒度控制的能力有限。同时,迅速的工程使操纵任务乏味且耗时。另一项工作线使用低级调理信号,例如Hu等人。[18],Patashnik等。[34],Zeng等。[58],草图[50],图像[5,47,54]编辑图像。但是,其中大多数作品要么属于迅速的工程陷阱,要么无法独立操纵多个对象。与以前的作品不同,我们的目标是独立控制组成图像的多个对象的正确条件,即对象级编辑。我们表明,我们可以在对象级编辑框架下制定各种图像编辑任务,从而实现全面的编辑功能。
在最近的研究中,已对开放式摄制对象检测任务进行了大量关注,旨在概括训练期间标记的类别的有限级别,并检测推理时任意类别名称所描述的对象。与常规对象检测相比,打开的词汇对象检测在很大程度上扩展了对象检测类别。但是,它依赖于计算图像区域与一组具有验证视觉和语言模型的任意类别名称之间的相似性。这意味着,尽管具有开放式的性质,但该任务仍然需要在推理阶段的预定义对象类别。这提出了一个问题:如果我们在推理中对对象类别没有确切的了解,该怎么办?在本文中,我们称之为新的设置为生成性开放式对象检测,这是一个更普遍和实际的问题。为了解决它,我们将对象检测形式为生成问题,并提出了一个名为generateu的简单框架,该框架可以检测密集的对象并以自由形式的方式生成其名称。尤其是,我们采用可变形的DETR作为区域促成生成器,其语言模型将视觉区域转换为对象名称。为了评估自由形式的对象划分任务,我们介绍了一种评估方法,旨在定量测量生成量的性能。广泛的实验表明我们的生成量强烈的零射击性能。代码可在以下网址获得:https://github.com/foundationvision/generateu。例如,在LVIS数据集上,我们的GenerateU在推理过程中属于类别名称,即类别名称无法看到类别名称,即使类别名称看不见类别名称,我们的GenerateU也可以与开放式唱机对象检测方法GLIP相当。