教授sasikumar.b@gmail.com和naveenmeti9353@gmail.com摘要:图像识别,增强现实,自动驾驶和监视的申请,这对这项计算机视觉至关重要。在这个项目中,使用复杂的深度学习技术来完成Python中检测到的事情。它使用预训练的卷积(CNN)模型使用神经网络,在图片或视频供稿中使用Yolo(仅查看一次)或SSD(单拍的多伯克斯检测器)来定位和识别事物。使用Pytorch和Tensor Flow等流行的库,使用thepython编程语言开发,训练和实现此副本时。用于处理传入数据的预处理程序,使用带注释的数据集的模型培训以及对新鲜照片或视频帧的推断都包含在实施中。此外,该项目还研究了如何加速推理,以便实时应用可以使用它。对象识别系统进行评估需要计算重要的性能度量,例如F1得分,回忆和精度。结果表明,在各种情况下,模型能够定位和识别项目。这项工作增加了扩展的机器视觉,并提供了一份有用的手册,用于利用Python实现感情对象。实现的模块化和灵活的设计使对于不同的用例和数据集修改变得易于修改。该项目的结果证明了在实际用途中进行更多突破的可能性,鼓励在包括图像处理,自主系统和监视的领域创新。关键字:Yolo
本数据表中的所有产品规格,语句,信息和数据(统称为“信息”)或在Object Firt的网站上可用的所有产品规格,“信息”均可能会更改。客户负责检查和验证该数据表中包含的信息在订单时适用于订单的程度。本文给出的所有信息都被认为是准确和可靠的,但是在没有保证,保证或任何形式的责任(表示或暗示)的情况下进行了介绍。
直接债务由各机构从国会获得的拨款提供资金。这些拨款由税收提供资金。为了显示纳税人的钱是如何使用的,报告按 34 个对象类别代码详细说明了直接债务。相反,可偿还债务由抵消收款提供资金,抵消收款是作为销售商品和服务的付款而收到的。这些收款可以来自联邦或非联邦来源。当联邦实体从另一个联邦实体购买商品或服务时,购买实体使用最能显示债务目的的对象类别报告直接债务,例如向 GSA 支付设备或租金。当根据收到的抵消收款履行债务时,履行实体报告可偿还债务。执行实体可以使用与购买实体不同的对象类别来描述其义务,例如人员薪酬。此报告在一行中显示可偿还义务,因为这些义务不是直接从拨款中资助的。
常见的通用分割方法会因照明突然变化而受阻。由于打开灯而导致的亮度显著增加以及物体投射的阴影通常会导致这些方法产生错误的分类。为了实现照明不变分割,本文讨论的共线向量模型从局部像素邻域构建 RGB 颜色向量。亮度变化只会对这些向量的长度产生标量值的影响。因此,可以采用正交距离测量来确定照明不变下的局部颜色相似性。在存在加性噪声的情况下,通过找到从向量到未知无噪声信号的最小正交距离来估计向量共线。距离最小化可以定义为最小特征值问题。该最小值被纳入贝叶斯框架,从而允许最大化决策的后验概率 (MAP)。将结果值与静态和自适应阈值进行比较。分类标签被认为是通过马尔可夫随机场 (MRF) 采样的,以对像素相互依赖性进行建模。相应的能量函数定义为证据在空间邻域上的积分。这会导致前景蒙版的空间紧凑性和平滑边缘。使用 PETS 2001 数据集和特定照明测试集来衡量性能。
有效而准确的对象检测是计算机视觉系统开发的重要主题。随着深度学习技术的出现,对象检测的准确性大大提高。该项目旨在集成现代技术以进行对象检测,目的是通过实时性能实现高精度。在许多对象识别系统中,对其他计算机视觉算法的依赖是一个重要的障碍。在这项研究中,我们完全使用深度学习技术完全解决了端到端对象检测问题。使用最困难的公开数据集对网络进行培训,该数据集用于年度项目检测挑战。需要对象检测的应用程序可以使系统的快速而精确的发现受益。1。简介对象检测是与计算机视觉和图像处理相关的众所周知的计算机技术。随着深度学习技术的出现,对象检测的准确性大大提高。它重点是检测数字图像和视频中某个类别(花,动物)的对象或实例。有各种应用,包括面部识别,角色识别和媒体计算器。1.1十年前的问题陈述,许多计算机视觉问题已经达到了饱和点。但是,由于深度学习技术变得越来越流行,因此这些问题的准确性已大大提高。图像分类器阳离子被视为图像类别的预测指标,是主要问题之一。图像本地化是一项相当具有挑战性的任务,系统必须预测图像中单个对象的位置类(对象周围的边界框)。对象检测是最具挑战性的问题(此项目),因为它同时结合了本地化和分类。在这种情况下,图片将是系统的输入,系统将生成一个边界框以及与图像中每个对象匹配的功能。
摘要。我们为开放世界实例(OWIS)提出了一种方法,该任务旨在通过从训练过程中的一组有限的带注释的对象类中概括图像中的任意未知的观察。我们的细分对象系统(SOS)明确地解决了最先进系统的概括能力和低精度,这些系统通常会生成背景检测。为此,我们基于基础模型SAM [27]生成了高质量的伪注释。我们彻底研究了各种对象先验,以引起SAM的提示,并明确将基础模型集中在观察上。最强的物体先验是通过自我监督视觉变压器的自我发项图获得的,我们用来促使SAM。最后,SAM的后处理片段用作伪注释来训练标准实例分割系统。我们的方法在可可,LVI和ADE20K数据集上显示出强大的概括能力,并且与最先进的方法相比,精度提高了高达81.6%。源代码可用:https://github.com/chwilms/sos