人类的生命中有铰接的物体。对清晰的物体的综合理解,即外观,结构,物理特性和语义,将使许多研究社区受益。作为当前的符号对象理解解决方案通常是基于具有无物理属性的CAD模型的合成对象数据集,从而阻止了在视觉和机器人任务中的实现对现实世界应用的满足概括。为了弥合差距,我们提出了AKB-48:一个大规模的对象k nowledge b ase,由48个猫咪的2,037个现实世界3D 3D铰接式对象模型组成。每个对象由知识图Artikg描述。为了构建AKB-48,我们提出了快速的发音知识建模(FARM)管道,可以在10-15分钟内满足铰接对象的Artikg,并在很大程度上降低了Real
9.2 策略 - 尽早干预以促进心理健康。9.2.1 具体结果 - 实施校园和地区品格发展团队,以指导共同语言并确定教师和学生易于理解的目的。9.2.2 具体结果 - 为教师和学生安排共同时间见面并建立关系,重点是品格发展、心理健康资源和成功目标。9.2.3 具体结果 - 建立一个汇集资源和服务的心理健康计划,旨在积极倡导和优先考虑员工的心理健康。
基于扩散的生成模型在合成和操纵图像具有巨大的图像方面表现出了令人鼓舞的结果,其中文本到图像模型及其后续作品在学术界和行业中都具有很大的影响。编辑真实图像时,用户通常希望对不同元素具有直观而精确的控制(即对象)组成图像,并不断地操纵它们。我们可以根据图像中的单个观察的控制级别对现有的图像编辑方法进行分类。一条工作涉及使用文本提示来操纵图像[2,15,24,27]。由于很难与文本同时描述多个对象的形状和外观,因此在对象级别上对细粒度控制的能力有限。同时,迅速的工程使操纵任务乏味且耗时。另一项工作线使用低级调理信号,例如Hu等人。[18],Patashnik等。[34],Zeng等。[58],草图[50],图像[5,47,54]编辑图像。但是,其中大多数作品要么属于迅速的工程陷阱,要么无法独立操纵多个对象。与以前的作品不同,我们的目标是独立控制组成图像的多个对象的正确条件,即对象级编辑。我们表明,我们可以在对象级编辑框架下制定各种图像编辑任务,从而实现全面的编辑功能。
摘要。通过互补感应方式整合各种表示形式对于自主驾驶中的强大场景解释至关重要。近年来,融合视觉和范围数据的深度学习体系结构具有先进的2D和3D对象检测。但是,这些方式在不利的天气或照明条件下通常会降解,从而导致性能下降。虽然已经开发了域适应性甲基元素来弥合源域和目标域之间的缝隙,但由于源和目标域之间的固有差异,它们通常会缺乏。此差异可以在数据的不同分布和不同特征空间的不同分布中表现出来。本文介绍了一个全面的域自适应对象检测框架。通过深度转移学习开发,该框架旨在从标记的透明天气数据中稳健地概括到无标记的不良天气条件,从而增强了基于深度学习的对象检测模型的性能。创新的斑块熵融合模块(PEFM)是我们方法的核心,该方法动态整合了sens-sor数据,强调关键信息并最大程度地减少了背景干扰。这进一步补充了一种新型的加权决策模块(WDM),该模块(WDM)根据其在特定环境条件下的功效来调整不同传感器的贡献,从而优化了检测准确性。此外,我们在转移学习过程中集成了域对齐损失,以确保有效的域适应性通过将特征图差异定于清晰和不利天气数据集之间的差异。我们评估了不同数据集的模型,包括Exdark(单峰),CityScapes(单峰)和密集(Mul-timodal),在我们评估的时间点,它在所有数据集中排在所有数据集中。
1. 简介 3D 建模是使用专门的计算机程序创建和修改三维对象的过程,该程序为用户提供了一组必要的工具。 3D 建模通常从基本形状(基元)开始,例如立方体、球体、圆环等。然后通过软件提供的不同功能修改这些形状。用户通常通过按下键盘上的组合键或从用户界面中选择它们来激活这些功能。如今,有许多功能强大的 3D 建模软件,可以创建 3D 资源、动画、特效和渲染图像。最受欢迎的付费应用程序是 Autodesk Maya、Autodesk 3ds Max 和 Cinema 4D。也有许多免费应用程序可用,但最受欢迎的应用程序是 Blender。Blender 是一个免费的开源 3D 计算机图形软件工具集。它用 C、C++ 和 Python 编程语言编写。Blender 基金会是一个负责 Blender 开发的非营利组织。 Blender 也是由社区开发的,社区创建了用 Python 编写的附加插件(称为附加组件)。附加组件为 Blender 添加了新功能或改进功能。由于 Blender 发展基金的成立,Blender 最近获得了 Epic Games、Nvidia 或 Intel 的大量资金支持。它使 Blender 基金会能够招募新的团队成员,从而更快地开发 Blender。
从:库珀发送:2023年3月2日向:第62A节申请<第62a e节 cc:cc:cc:主题:异议:玛格勒·帕勒姆(Pelham)帕勒姆(Pelham)用品的土地上的太阳能农场(Maggots end Manuden) - 申请编号:S62A/202A/0011默认地位,Solar Farm on sil offerm offerm offerm offerm offermant offer nand offers offer nand offer nand offer offer, Manuden-申请编号:S62A/2022/0011我写信,反对申请,以构建一个太阳能农场,该太阳能由地面安装的太阳能阵列以及(除其他外)电池存储,逆变机,一个变电站,围栏,围栏和CCTV摄像机在Pelham pelham beets Maggots Maguden Road Manuden Road Manuden Manouden Road Manuden CM23 CM23 1BJ附近。我的名字叫威廉·库珀
1。分析您选择的国家/地区的环境的文化建构2。比较和对比具有不同环境质量水平的国家的环境感知3。批判性地评估了一个国家和不同国家内部的社会的发展状况和环境问题的类型。4。确定一个地区的社会人口统计学和工业特征,并将其与该地区的环境问题相关联?5。显示自然资源使用与不断变化的社区人口动态之间的任何关系7。评估人们的自然资源使用模式及其参与自然资源保护的可能性8。在给定的区域9.分析对人口或利益相关者环境资源的态度,知识和价值观,以及公众愿意为资源保护做出哪些权衡。10。确定跨社会成员的资源的访问,并建议采取公平共享资源或相关利益的措施。11。选择环境政策/法规,并确定其对社会的影响。暗示性读数1。Cárdenas,J.C.,2009。环境和开发实验。资源经济学年度评论,1(1),第157-82页。Chokkan,K.B.,Pandya,H。&Raghunathan,H。(eds)。 2004。 了解环境。 Sagar出版印度列兵。 Ltd.,新德里。 3。 Elliot,D。2003。 能源,社会和环境,可持续未来的技术。 30 Routledge出版社。 4。Loris,A.A.R。 ed。,2021。 环境与发展:挑战,政策和实践。 Springer自然。 5。 leopold,A。 1949。 土地道德。 pp。 201-214。 芝加哥。 美国。Chokkan,K.B.,Pandya,H。&Raghunathan,H。(eds)。2004。了解环境。Sagar出版印度列兵。 Ltd.,新德里。 3。 Elliot,D。2003。 能源,社会和环境,可持续未来的技术。 30 Routledge出版社。 4。Loris,A.A.R。 ed。,2021。 环境与发展:挑战,政策和实践。 Springer自然。 5。 leopold,A。 1949。 土地道德。 pp。 201-214。 芝加哥。 美国。Sagar出版印度列兵。Ltd.,新德里。3。Elliot,D。2003。能源,社会和环境,可持续未来的技术。30 Routledge出版社。4。Loris,A.A.R。 ed。,2021。 环境与发展:挑战,政策和实践。 Springer自然。 5。 leopold,A。 1949。 土地道德。 pp。 201-214。 芝加哥。 美国。4。Loris,A.A.R。ed。,2021。环境与发展:挑战,政策和实践。Springer自然。5。leopold,A。1949。土地道德。pp。201-214。芝加哥。美国。美国。
推动是一项必不可少的非划算操作技能,用于任务,从预抓操作到场景重新排列,关于场景中的对象关系的推理,因此在机器人技术中广泛研究了推动动作。有效使用推动动作通常需要了解受操纵对象的动态并适应预测与现实之间的差异。出于这个原因,在文献中对推动作用进行了效果预测和参数估计。但是,当前方法受到限制,因为它们要么建模具有固定数量对象的系统,要么使用基于图像的表示,其输出不是很容易解释并迅速累积错误。在本文中,我们提出了一个基于图神经网络的框架,以根据触点或关节对对象关系进行建模,以效应预测和参数估计推动操作。我们的框架在真实和模拟环境中都得到了验证,这些环境包含不同形状的多部分对象,这些对象通过不同类型的关节和具有不同质量的对象连接,并且在物理预测上的表现优于基于图像的表示。我们的方法使机器人能够预测并适应其观察场景时推动动作的效果。它也可用于使用从未看过的工具进行工具操作。此外,我们在基于机器人的硬盘拆卸的背景下证明了杠杆起作的6D效应预测。
近年来,基于深度学习的目标检测取得了长足的进步。然而,由于域转移问题,将现成的检测器应用于看不见的域会导致性能大幅下降。为了解决这个问题,本文提出了一种新的由粗到细的特征自适应方法用于跨域目标检测。在粗粒度阶段,与文献中使用的粗糙的图像级或实例级特征对齐不同,采用注意机制提取前景区域,并通过在公共特征空间中多层对抗学习根据其边缘分布进行对齐。在细粒度阶段,我们通过最小化来自不同域但属于同一类别的全局原型的距离来进行前景的条件分布对齐。由于这种由粗到细的特征自适应,前景区域中的领域知识可以得到有效的迁移。在各种跨域检测场景中进行了大量的实验。结果是最先进的,证明了所提出方法的广泛适用性和有效性。
以生物风格的活动相机跟踪近年来引起了人们的兴趣。现有的作品要么利用对齐的RGB和事件数据进行准确跟踪,要么直接学习基于事件的跟踪器。前者会产生较高的推理成本,而后者可能容易受到嘈杂事件或稀疏空间分辨率的影响。在本文中,我们提出了一个新型的分层知识蒸馏框架,该框架可以在培训期间完全利用多模式 /多视图信息,以促进知识转移,使我们能够仅使用事件信号来实现测试过程中高速和低潜伏期视觉跟踪。特别是,基于教师变压器的多模态跟踪框架首先是通过同时喂食RGB框架和事件流来训练的。然后,我们设计了一种新的分层知识蒸馏策略,其中包括成对相似性,功能表示和基于响应地图的知识蒸馏,以指导学生变形金刚网络的学习。在术语中,由于现有的基于事件的跟踪数据集都是低分辨率(346×260),因此我们提出了名为EventVot的第一个大规模高分辨率(1280×720)数据集。它包含1141个视频,并涵盖了许多类别,例如行人,车辆,无人机,乒乓球等。对低分辨率(Fe240Hz,Vi-Sevent,Coesot)和我们新提出的高分辨率EventVot数据集的进行了实验进行了实验
