摘要 - 批判是基于激光雷达的对象检测方法的主要挑战,因为它使自我车辆无法观察到的感兴趣区域。提出的解决此问题的解决方案来自通过车辆到所有(V2X)通信的协作感知,这要归功于在多个位置存在连接的代理(Vehilect和智能路边单位)的存在,以形成完整的场景表示。V2X合作的主要挑战是绩效 - 带宽折衷方案,它提出了两个问题(i)应该在V2X网络上交换哪些信息,以及(ii)如何融合交换的信息。当前最新的最新方法可以解决中期方法,其中传达了点云的鸟眼视图(BEV)图像,以使连接剂之间的深层相互作用,同时减少带宽消耗。在达到强大的性能时,大多数中期方法的现实部署都受到过度复杂的体系结构和对代理间同步的不切实际的假设的阻碍。在这项工作中,我们设计了一种简单而有效的协作方法,基于从每个代理商中交换输出,从而实现更好的带宽性能折衷,同时最大程度地减少了单车检测模型所需的更改。此外,我们放宽了现有的有关代理间同步的最新方法中使用的假设,仅需要在连接的代理之间进行常用时间参考,这可以在实践中使用GPS时间实现。该代码将在https://github.com/quan-dao/practical-collab-ception中发布。在V2X-SIM数据集中进行的实验表明,我们的协作方法达到76.72平均平均精度,这是早期协作方法的性能99%,同时消耗了与晚期协作一样多的带宽(平均为0.01 MB)。
工作流语言(CWL)[15],更具体地说是抽象的CWL [20](不可执行)描述变体,伴随本机工作流定义。这以跨工作流语言的互操作方式呈现结构,组成的工具和外部接口。wfms可以生成抽象的CWL,已经为银河系演示,旁边是“本机” Galaxy Workflow描述。此语言二元性是可重复性的重要保留方面,因为可以独立于其本机格式作为CWL访问工作流的结构和元数据,即使可能不再可执行,也可以以公平的格式捕获规范的工作流。本机格式的共同存在可以从特定的WFM中直接重复使用,从而受益于其所有功能。●使用最小信息模型的有关工作流及其工具的元数据:我们使用BioSchemas [16]配置文件
摘要背景与目的:Isthmin 2 (ISM2) 属于分泌蛋白家族。其功能和在肿瘤发病机制中的作用仍不清楚。我们打算研究 ISM2 在结直肠癌 (CRC) 中的潜在生物学作用和临床重要性,例如免疫治疗。方法:获取来自基因表达综合 (GEO) 以及癌症基因组图谱 (TCGA) 的数据集以估计 CRC 中 ISM2 的表达水平。ROC 曲线计算 ISM2 的诊断价值。TIMER 2.0 用于研究 ISM2 表达与免疫细胞和主要免疫检查点之间的关联。京都基因和基因组百科全书 (KEGG) 富集分析和基因本体论 (GO) 进一步用于研究相关途径。最后,进行了几个体外和体内试验,例如异种移植生长试验,以验证 ISM2 在免疫治疗和 CRC 进展中的作用。结果:ISM2 在 CRC 患者中高表达。此外,ISM2 是一个依赖性危险因素。ISM2 高表达与不良预后显着相关。更重要的是,一些体外和体内试验证实了 ISM2 在 CRC 进展中的重要意义。此外,ISM2 的沉默可诱导更多的 CD8 + T 细胞在肿瘤中浸润并增强 PD1ab 治疗。结论:ISM2 与 CRC 的临床病理特征和肿瘤微环境密切相关。关键词:Isthmin 2、结直肠癌、CD8 + T 细胞、免疫检查点阻断资金:无*本作品已根据 CC BY-NC-SA 许可发表。版权所有©作者引用本文为:王 Y,王 P,刘 J,钟 L。ISM2 是一种新型预后生物标志物,与结直肠癌的肿瘤免疫微环境相关。伊朗红新月会医学杂志 2024,96.1-11。1. 引言
摘要 - 在本文中,我们提出了一种使用机器人臂控制弹性可变形物体形状的一般统一跟踪方法。我们的方法是通过在对象周围形成晶格,将对象与晶格结合,并跟踪和宣誓晶格而不是对象的宣誓。这使我们的方法完全控制了3D空间中任何一般形式的弹性变形对象的变形(线性,薄,体积)。此外,它将方法的运行时复杂性与对象的几何复杂性相分解。我们的方法基于可行的(ARAP)变形模型。它不需要已知对象的机械参数,并且可以通过大变形将对象驱动到所需的形状。我们方法的输入是对象表面的静止形状的点云,并且在每个帧中由3D摄像头捕获的点云。总的来说,我们的方法比现有方法更广泛地适用。我们通过多种形状和材料(纸,橡胶,塑料,泡沫)的弹性变形物体进行了许多实验来验证方法的效率。实验视频可在项目网站:https://网站上找到。Google。com/view/tracking-servoing-apphack。
摘要 - 遮挡对安全至关重要的应用(例如自动驾驶)提出了重大挑战。集体感知最近引起了巨大的研究兴趣,从而最大程度地减少了闭塞的影响。尽管已经取得了重大进步,但是这些方法的渴望数据的性质为其现实世界部署带来了重大障碍,尤其是由于需要带注释的RSU数据。鉴于交叉点的数量和注释点云所涉及的努力,手动注释培训所需的大量RSU数据非常昂贵。我们通过根据无监督的对象发现为RSU设计标签有效的对象检测方法来应对这一挑战。我们的论文介绍了两个新模块:一个基于点云的空间时间聚集,用于对象发现,另一个用于改进。fur-hoverore,我们证明,对一小部分带注释的数据进行微调使我们的对象发现模型可以使用甚至超过完全监督的模型范围缩小性能差距。在模拟和现实世界数据集中进行了广泛的实验,以评估我们的方法†。
e.1.a-提高水生生态系统的质量和弹性。e.1.b-减少农业土地上的地表水的多余营养损失。e.1.c-从城市雨水径流中减少向地表水的多余营养损失。e.1.d-减少水文修饰的影响,这有助于地表水中的养分负荷。e.1.e-最大化养分管理实践和农艺系统的采用和功效,从而减少了养分量的任何土地的养分损失。e.1.f-增加流域恢复生态系统服务的功能,以减少和介导营养损失。e.1.g-增加对地表水中过量营养负荷的原因和解决方案的理解。e.1.h-增加对不断变化的气候对促成和介导养分负荷的机制的影响的理解。E.2。 - 减少地下水中的养分负荷。E.2。- 减少地下水中的养分负荷。
机器学习模型很难推广到它们所训练的分布之外的数据。特别是,视觉模型通常容易受到对抗性攻击或常见损坏的影响,而人类视觉系统对此具有鲁棒性。最近的研究发现,将机器学习模型正则化以支持类似大脑的表示可以提高模型的鲁棒性,但原因尚不清楚。我们假设模型鲁棒性的提高部分归因于从神经表征中继承的低空间频率偏好。我们通过几种频率导向分析测试了这个简单的假设,包括设计和使用混合图像来直接探测模型频率敏感性。我们还研究了许多其他公开可用的鲁棒模型,这些模型是在对抗性图像或数据增强上训练的,发现所有这些鲁棒模型都表现出对低空间频率信息的更大偏好。我们表明,通过模糊进行预处理可以作为防御对抗性攻击和常见损坏的机制,进一步证实了我们的假设并证明了低空间频率信息在鲁棒物体识别中的效用。
摘要 - 本文解决了在复杂制造环境中实施无标记的增强现实(AR)的挑战。使AR系统更加直观,健壮和适应性是使其在行业中成为可能的必需步骤。在不受控制的现实世界环境中遇到的硬约束中,我们显着面对生产线的动态性质以及在组装过程中对象的不断发展的外观。新兴深度学习(DL)方法启用了6D对象构成移动对象的AR注册的估计。但是,他们需要大量的6D对象构成地面真相数据。在现实世界的情况下,由于两个因素:建立精确的6D姿势标签程序的复杂性是在真实生产线中建立准确的6D姿势标签程序的复杂性,并且在整个组装线上遇到了各种各样的对象状态和外观。因此,有必要开发能够处理看不见的对象的替代6D构成估计技术。为此,本文介绍了一条新的管道,依靠HoloLens 2进行数据捕获,神经辐射场(NERF)进行3D模型生成,以及用于6D姿势估计的Megapose。所提出的方法可以实现6D姿势估计,而无需特定对象的训练或辛苦的姿势标签。
已经开展了管理活动,以降低养分水平,包括加入有机消化液,Coir卷和种植以阻止加拿大鹅的种群。控制鱼类种群以减少沉积物搅拌/养分负荷。每年由许可承包商净收入。在冬季时期的微观剂量,通过分解有机淤泥和碎屑来改善湖泊的水质。群(有机产品)整个季节都用作控制蓝细菌的预防措施。积极地减少自湖泊自湖以来所见的生态下降。
摘要:本文介绍了智能电动轮椅的高级驾驶员援助系统(ADA)的开发,以提高残疾人的自主权。我们的用例基于正式的临床研究,基于轮椅室内环境中物体的检测,深度估计,定位和跟踪,即:门和门把手。这项工作的目的是为轮椅提供一个感知层,使以这种方式检测这些关键点在其直接周围的周围,并构建了短期寿命语义图。首先,我们将Yolov3对象检测算法的改编对我们的用例进行了改编。然后,我们使用Intel Realsense相机介绍我们的深度估计方法。最后,作为方法的第三步也是最后一步,我们根据排序算法介绍了3D对象跟踪方法。为了验证所有发展,我们在受控的室内环境中进行了不同的实验。使用我们自己的数据集对检测,距离估计和对象跟踪进行实验,其中包括门和门把手。