Loading...
机构名称:
¥ 1.0

摘要 - 本文解决了在复杂制造环境中实施无标记的增强现实(AR)的挑战。使AR系统更加直观,健壮和适应性是使其在行业中成为可能的必需步骤。在不受控制的现实世界环境中遇到的硬约束中,我们显着面对生产线的动态性质以及在组装过程中对象的不断发展的外观。新兴深度学习(DL)方法启用了6D对象构成移动对象的AR注册的估计。但是,他们需要大量的6D对象构成地面真相数据。在现实世界的情况下,由于两个因素:建立精确的6D姿势标签程序的复杂性是在真实生产线中建立准确的6D姿势标签程序的复杂性,并且在整个组装线上遇到了各种各样的对象状态和外观。因此,有必要开发能够处理看不见的对象的替代6D构成估计技术。为此,本文介绍了一条新的管道,依靠HoloLens 2进行数据捕获,神经辐射场(NERF)进行3D模型生成,以及用于6D姿势估计的Megapose。所提出的方法可以实现6D姿势估计,而无需特定对象的训练或辛苦的姿势标签。

生成媒体:签名,隐喻和经验

生成媒体:签名,隐喻和经验PDF文件第1页

生成媒体:签名,隐喻和经验PDF文件第2页

生成媒体:签名,隐喻和经验PDF文件第3页

生成媒体:签名,隐喻和经验PDF文件第4页

生成媒体:签名,隐喻和经验PDF文件第5页