将生物原理整合到人工嗅觉系统中,导致了气味检测和分类的显着前进。受到自然嗅觉的复杂机制的启发,研究人员正在开发模仿生物嗅觉途径功能的复杂系统。这些系统利用高密度化学主义传感器阵列(HCSA)结合了先进的计算技术,例如FPGA加速的肾小球收敛CUITS(FGCC)和层次图形图形神经网络(HGNN)。这种生物启发的方法可以实现对挥发性有机化合物(VOC)(VOC)的实时自适应反应,从而提高了气味识别的准确性和效率。是多参数sigmoidal传感器激活(MPSA),它通过利用传感器ARS的多种响应来量化VOC。通过模仿生物系统中发现的神经相互作用,通过可编程突触横梁(LIPSC)实施了横向抑制作用。添加 - 时间自组织图(TSOM)促进气味模式的动态聚类,从而使人们对复杂的气味环境有细微的理解。这项研究的一个新方面在于气味填充物的Grassmannian歧管嵌入(GME),该杂物提供了一个数学框架,用于代表和分析气味的多维性质。再加上哈密顿蒙特卡洛优化的反馈(HMC-FB),该系统有效地补偿了传感器读数的漂移,从而确保了随着时间的推移一致的性能。通过弥合生物学灵感与技术创新之间的差距,这些人工嗅觉系统有望彻底改变从环境监测到食品安全和医疗保健的应用。
由于涉及来自不同模式的刺激,且可能存在不同的有效机制(例如疼痛刺激与金钱奖励),因此对食欲和厌恶条件作用背后的生理机制进行比较通常具有挑战性。嗅觉系统为研究人类的这两种条件作用提供了一个独特的机会,因为等强度的气味可以作为相当愉快和不愉快的刺激。为了研究食欲和厌恶学习过程中的生理和行为反应,我们在受试者内设计中使用气味作为非条件刺激 (US),测量各种条件生理反应,包括皮肤电导、心率、脉搏波幅度、呼吸、恐惧增强惊吓、耳后反射、面部肌电图以及事件相关电位和来自脑电图的听觉稳态反应 (ASSR)。我们对总共 95 名参与者进行了四项实验,呈现三种中性声音,搭配愉快的气味、难闻的气味或无味的空气。第一个实验涉及未经指导的参与者和频率调制条件刺激 (CS),用于 ASSR 分析。在第二个实验中,我们省略了频率调制和惊吓探针。第三个实验包括对 CS-US 偶发性的实验前指导,而第四个实验与其他三个实验相比采用了延迟条件范式。我们的结果表明,CS+ 和 CS- 之间的差异仅在实验 3 中的恐惧增强惊吓反应中。未发现其他影响。在多个外周和神经生理测量中观察到的学习效果极小或缺失,可能归因于嗅觉通路的丘脑外性质以及随后与听觉刺激形成关联的困难。
脑脑脑组成了哺乳动物大脑中的主要区域,其中包括多个重要组成部分,包括大脑皮层,边缘系统,基底神经节和嗅觉系统[1,2]。具有多个不同部分的尾脑的发展需要各种信号通路的相互作用,这些信号通路从胚胎到成人阶段都受到严格调节。此外,由于基因突变或外部因素而出现了与端脑开发有关的各种疾病[3]。尽管在过去几十年中取得了重大进展,但在揭示了大脑发育和病理生理学的机制,但大脑的复杂结构和功能带来了重大挑战。最近,已经开发出称为脑官的模型来模仿发展中的人脑[4]。
摘要:生物学原理引起人们对服务机器人技术的关注,因为机器人操作各种任务时具有类似的概念。生物启发的感知对于机器人感知意义重大,这是受动物对环境意识的启发。本文回顾了室内环境中服务机器人的生物启发的感知和导航,这是平民机器人技术的流行应用。导航方法通过感知类型进行了分类,包括基于视觉的,遥感,触觉传感器,嗅觉,基于声音,惯性和多模式导航。最新技术的趋势正在朝着多模式导航迈进,以结合多种方法。室内导航的挑战集中在精确的本地化以及动态和复杂的环境上,并具有移动的对象和人员。
胚胎端脑可大致细分为背部的皮质和海马体,以及腹部的 MGE、LGE 和 CGE。确定这些胚胎结构如何产生成熟大脑中的结构是了解端脑发育的关键。目前,人们对 MGE 和 LGE 中产生的细胞的发育和命运了解甚多。尽管 CGE 约占 E13.5 腹侧端脑的 40%,但对该区域的发育命运知之甚少。CGE 被定义为 MGE 和 LGE 融合成单一结构后方的区域,目前尚不清楚 CGE 是 MGE 还是 LGE 的后方延伸、两者的组合还是独特的结构。在小鼠中,我们对 MGE 和 LGE 的发育和命运的理解来自于许多不同的方法,包括(i)基于形态的推断(例如胚胎与成体拓扑结构的比较)1,2,(ii)分析发育过程中的基因表达模式 3,(iii)使用亲脂性染料标记的体外迁移测定 4–9 和(iv)分析缺乏影响这些结构的基因的突变小鼠 10–16 。综上所述,这些研究表明 MGE 和 LGE 产生了基底神经节(纹状体和苍白球),并且通过切向迁移,也是大脑皮层、海马和嗅球中大多数中间神经元的来源 17,18 。这些结构也被认为是少突胶质细胞的重要来源 19–23 。我们开发了一种方法,利用超声背散射显微镜 (UBM) 引导的同源移植来绘制 MGE 和 LGE 24 的命运图谱。这项先前的研究首次提供了体内证据,表明 MGE 细胞大量迁移到皮质,并在那里分化为中间神经元。这项研究还在体内证实了 LGE 主要产生纹状体 25 的投射神经元和嗅球的中间神经元。
摘要 吞咽困难是整个中风恢复过程中的突出问题,它的存在可能会导致肺部并发症,特别是肺炎、脱水和营养不良。据估计,29% 至 50% 的急性中风幸存者患有吞咽困难。在本章中,我们描述了常用于检测和评估吞咽困难和误吸的技术。我们还回顾了用于治疗吞咽困难的干预措施,包括质地改良饮食、一般吞咽困难治疗计划、非口服(肠内)喂养、药物、电刺激和物理/嗅觉刺激。 Jerome Iruthayarajah,理学硕士 Marcus Saikaley,理学士 Penny Welch-West,M.CI.Sc.SLP Norine Foley,理学硕士 Rosemary Martino,博士 Marina Richardson,理学硕士 Rebecca Orenczuk,M.CI.Sc.SLP Robert Teasell,医学博士
1简介虚拟现实(VR)与传统媒体固有不同,因为它引入了额外的自由度,更广泛的视野,更复杂的声音空间化,甚至可以使用户控制相机。VR沉浸式设置(例如头部安装的显示器(HMD)或类似洞穴的系统)有可能改变消费内容的方式,增加现实主义,沉浸和参与度。这影响了许多应用领域,例如教育和培训[29],康复和神经科学[183,237]或虚拟摄影[194]。这些系统的关键方面之一在于它们能够从不同方式(主要是视觉和听觉,但也是触觉,嗅觉,味道或本体感受)重现感觉信息的能力,从而使它们具有前所未有的潜力。
1 引言 虚拟现实 (VR) 本质上不同于传统媒体,因为它引入了额外的自由度、更宽的视野、更复杂的声音空间化,甚至让用户可以控制摄像头。因此,VR 沉浸式设置(如头戴式显示器 (HMD) 或类似 CAVE 的系统)有可能改变内容消费方式,提高真实感、沉浸感和参与度。这已经影响了许多应用领域,如教育和培训 [ 29 ]、康复和神经科学 [ 183 , 237 ] 或虚拟电影摄影 [ 194 ]。这些系统的关键方面之一在于它们能够重现来自不同模态(主要是视觉和听觉,也有触觉、嗅觉、味觉或本体感受)的感官信息,这给它们带来了前所未有的潜力。
f igure 1:颗粒细胞是成年嗅球(OB)的中间神经元,是在成人室内室内(SVZ)中产生的。表达记者病毒的立体定位注射允许监测其迁移和分化的五个定型步骤的时间顺序(1,2),如GFP标记的神经元所示。新生产的神经元沿着几个mm在tho骨迁移流(RMS)中向切向迁移。一旦到达OB,他们的迁移就会径向移动。他们的细胞体停止迁移,然后开始阐述基础,然后是顶端树突。最终,它们形成刺,在功能上突触到预先现有的网络。在此项目中,我们将在SVZ中注入表达生物传感器的病毒,以在不同的迁移和分化阶段通过fret-Imaging监测CAMP/CGMP信号传导。
基因编辑技术已经彻底改变了蚊子感觉双学科的领域。这些技术已被用来用神经元基因与框架敲击报告基因,并使用TAG特定的蚊子神经元使用二进制表达系统来检测其活性。尽管有这些进展,但仍需要开发新的工具来阐明嗅觉信号从pe层到大脑的传播。在这里,我们提出了一组工具的开发,包括新型驱动线和神经调节活动的传感器,这可以介绍我们对感觉输入触发行为输出的了解。这种情况可以改变我们对蚊子神经生物学的理解,并导致制定蚊子行为操纵策略以减少叮咬和疾病的传播。
