的手性和混乱都根植于对称性的破裂中,在基本和应用物理学中一直很有趣。尽管他们共同基础,但这两个基本概念在很大程度上是独立发展的,在交叉路口留下了未开发的潜力。在这里,我们报告了混乱诱导的光学手性,并在量子微叠剂中建立了这些基本现象之间的第一个直接联系。我们揭示了混乱的光动力学打破了时间反转对称性,从而在反推销腔模式之间产生了局部不平衡的强度。通过将手性变压器整合到微腔中,这种局部不平衡被转化为全球性手性,从而产生高度方向的娱乐内激光场,并具有测量的counterpropagation功率比超过10 dB。值得注意的是,这种混乱引起的手性表现出极大的鲁棒性,可以使变压器位置和跨不同空腔边界形状之间的变化具有多种变化,超过了传统方法的多功能性,从而为创新的手势光电设备,单向量子网络和超越。
最先进的半导体光刻将我们世界上最先进的光学系统与巧妙设计且高度优化的光化学材料和过程结合在一起,以制造使我们的现代信息社会的微型和纳米结构。应用光学,化学和材料科学的独特组合为对应用自然科学和技术感兴趣的科学家和工程师提供了理想的游乐场。多年来,光刻图案技术的发展几乎仅仅是按照驱动的扩展,并着重于改进分辨率,以支持戈登·摩尔(Gordon Moore)将更多组件挤在集成电路上的愿景。尽管这种缩放量仍未达到其最终限制,但在具有所需统一性且没有缺陷的半导体芯片上产生更多和较小的模式变得越来越困难和昂贵。针对新兴新颖应用的未来光刻技术必须强调不同的要求,包括三维(3D)形状控制,新颖(功能)材料的整合,非平面表面上的图案,对目标模式的灵活适应最终应用等等等。在技术开发50多年的技术开发中获得的半导体光刻者的知识和经验为开发新型微型和纳米技术驱动的应用提供了重要关键。它还应帮助高级工程师和经理对替代方法和应用程序的看法。本书并不是要提供对印刷图案技术各个方面的完整描述。这本书的材料是在多年的有关光刻的讲座上编写的:在Friedrich-Alexander-University-University Erlangen-Nuremberg上的技术,身体效果和建模,并为公司的特殊方面以及公司的特殊方面以及作为会议的附带活动准备专门的课程。本书旨在帮助有兴趣的学生具有物理,光学,计算工程,数学,化学,材料科学,纳米技术和其他领域的背景的学生,以在纳米化的光刻技术的迷人领域开始使用。相反,该书着重于对图像和模式形成的基本原理的解释。
最近在光学和光子学方面取得了突破,导致了非重点设备和材料的显着进步。研究人员已经证明了实现光学隔离的各种方法,包括磁光隔离器,非逆地相位变速器和声学系统。研究表明,可以使用IIII-V-niobate放大器和激光器(De Beeck等,2021)以及氮化硅平台(Yan等,2020)来实现综合波导隔离器。这些设备可实现有效的光学通信和传感应用。此外,研究人员还探索了在硅光子系统中使用微量的,这可以导致紧凑和集成的光子溶液(Shu等,2022; Shen等,2020)。其他研究的重点是开发针对平面波导隔离器的非重粒子材料和设计(Srinivasan&Stadler,2018)。此外,研究人员还研究了在不使用磁光材料的情况下实现光学分离的各种方法。这些方法包括合成磁力和储层工程(Fang等,2017),电动驱动的Acousto-Optics(Kittlaus等,2021)以及声子介导的光子自动镇分布(Sohn等,2021)。总体而言,这些非重点设备和材料中的这些进展对用于光学通信,传感和其他应用的紧凑,集成光子系统的开发具有重要意义。最近的一项研究证明了用于基于芯片的激光雷达技术的非重点脉冲路由器的发展[1]。这项创新基于光学隔离器和循环器的先前研究,这些创新已被证明是通过参数放大[2]和KERR效应的固有非交流性[3]来实现的。其他研究探索了微孔子来创建隔离器和循环器[4],以及在对称微腔中的可重构对称性激光[5]。研究人员还研究了用于频率梳子产生和低功率启动的高Q氮微孔子[6,7]。已经报道了磷化磷化物非线性光子学的综合凝固膜的发展,以及基于触觉的Kerr非线性综合光子学[8,9]。还研究了高Q硅碳化物微孔子中的光学KERR非线性,以及硅碳化物纳米光子学中的光学参数振荡[10,11]。进一步的研究集中于具有高第二谐波产生效率的定期粘性薄膜硅锂微孔谐振器[12]。单片硅锂光子电路已为Kerr频率梳子的产生和调制开发[13]。研究还研究了由于动态互惠性而引起的非线性光学隔离器的局限性[14],以及非线性谐振器中反传播光的对称破坏[15]。已报道了非线性微孔子中自发性手性的实验证明,以及基于氮化硅和非线性光学硅Hydex的新型CMOS兼容平台[16,17]。研究还探索了稀薄的氮化硅同心微孔子中的分散工程和频率梳子的产生[18]。据报道,探测材料吸收和集成光子材料的光学非线性,以及解决硅微孔谐振器设备的热挑战[19,20]。最后,已经证明了镜子对称的片上频率循环,以及由硅芯片上带光子跃迁引起的电动驱动的非转换的非逆向性[21,22]。使用微孔调制器的光学隔离也已经探索[23]。注意:我在试图维护原始含义和上下文的同时解释了文本。但是,为了清楚起见,可能已经省略或改写了一些次要细节。研究人员刘和团队开发了一种大规模生产高质量氮化硅光子电路的方法,以最低的损失率以最低的损失率实现了出色的性能。在他们最近在《自然传播》中的出版物中详细介绍了这一突破。
摘要:元时间最近在光学研究中占据着突出性,提供了独特的功能,可用于成像,束形成,全息,偏光法等,同时保持设备尺寸较小。尽管已经在文献中对大量基本的跨表面设计进行了彻底的研究,但随着跨面相关论文的数量仍在快速增长,因为跨表面研究现在正在扩展到相邻的领域,包括计算成像,增强现实,增强和虚拟的现实,自动化,自动化,自动化,量子,量子,数量,量子,量和替代量。同时,元信息在更紧凑的光学系统中执行光学功能的能力引发了各种行业的强大而不断增长的兴趣,这些行业从低成本以低成本的光电系统中的微型化,功能高的光学组件的可用性中受益匪浅。这为Metasurfaces领域创造了一个真正独特的机会,从而使科学和工业产生影响。该路线图的目的是标志着元图研究的“黄金时代”,并定义了未来的方向,以鼓励科学家和工程师推动跨境领域的研究和发展,以实现科学卓越和广泛的工业采用。关键字:元图,金属,平面光学,逆和拓扑设计,计算成像,可调式跨面,新概念,新兴材料平台,大规模纳米构造,Metasurface应用