RenatoAmbrósioJr,Aydano P. Machado,EdileuzaLeão,JoãoMarceloG. Lyra,MarcellaQ.Salomão,Louise G. Pellegrino Esporcatte,Joãobrbr da Fonsecals,Eri-ne-ne-ne-ne berna,Eri-ne-ne-berna file Thia J. Roberts,Ahmed Elsheikh,Riccardo Vinciguerra,Paolo Vinciguerra,JensBüashren,Thom Khadoh,M。F. I,Nikki L. Hafezi,Emilio Trattler,Luca Gualdi,Joséaldi,Do-Norga-Foria-Coria lias Flockerzi,Berthold Seitz,Vishal Jhanji,Tommy Cy Chan,Pedro Manuel Baptista,Dan Z. Reclestein,Timothy J.Archer,Karolinne M. Rocha,乔治·沃尔姆,我,Soheila Asgari,Hamed Momeni-Moghaddam,Siamak Zarei-Ghanavati,Rohit Shetty,Pooja Khamar,Michael W. Belin和Bernardo T. Lopes
1 西班牙奥维耶多大学微生物学领域功能生物学系 BIONUC(营养保健品和生物活性化合物生物技术)研究组,奥维耶多 33006; magadanpatricia@uniovi.es (PM-C.); yesuhui@uniovi.es (SY); apv.moratalla@gmail.com(Á.P.-V.); mcalpineatsantaclara@gmail.com (PLM); uo269925@uniovi.es(PV-C.); cjvg@uniovi.es (CJV) 2 IUOPA(阿斯图里亚斯公国大学肿瘤研究所),33006 奥维耶多,西班牙 3 ISPA(阿斯图里亚斯公国健康研究所),33006 奥维耶多,西班牙 4 国家生物技术中心系统生物学系,CSIC,28049 马德里,西班牙; jtbace8@gmail.com(JT-B.); jnogales@cnb.csic.es (JN) 5 面向循环经济的可持续塑料跨学科平台-西班牙国家研究委员会(SusPlast-CSIC),28040 马德里,西班牙 * 通讯地址:lombofelipe@uniovi.es;电话:+34-985103593 † 这些作者对这项工作做出了同等贡献。
在相同的占地面积内,用于储存热量和冷却 基线: • 建筑物消耗约 40% 的一次能源,其中约一半用于热负荷 • 空调目前是碳密集型的,推动使用天然气或石油的峰值电厂。 • 供暖目前碳密集程度更高,主要使用天然气、石油或丙烷 THERMAplus 可实现: (1) 将热负荷从高峰转移到非高峰/可再生能源密集型,节省高达 50% 的空调费用
美国国家可再生能源实验室 (NREL)、桑迪亚国家实验室和佐治亚理工学院将制定测试协议,以评估 COOLERCHIPS 项目在实际数据中心运行条件下开发的冷却技术。测试范围将从组件级到机架级,一直到全边缘数据中心。该技术评估团队将利用 COOLERCHIPS 类别 C 团队所做的工作来开发数字孪生,以评估关键参数,并帮助测试其他 COOLERCHIPS 项目团队开发的广泛技术,以评估其热、可靠性和成本目标。
摘要 —本文采用带单位反馈的闭环系统中的 PID 控制器来控制机器人机械手。控制器的使用难点在于参数调整,因为调整参数仍然使用试错法来找到 PID 参数常数,即比例增益 (K p )、积分增益 (K i ) 和微分增益 (K d )。在这种情况下,蚁群优化算法 (ACO) 用于寻找 PID 的最佳增益参数。蚂蚁算法是一种组合优化方法,它利用蚂蚁从巢穴到食物所在位置寻找最短路径的模式,该概念应用于通过最小化目标函数来调整 PID 参数,从而使机器人机械手具有改进的性能特征。本研究采用 Matlab Simulink 环境,首先建立系统模型,然后利用蚁群算法确定适当的系数 𝐾 p 、 𝐾 i 和 K d ,以使机器人机械手两个关节的轨迹误差最小化。然后,将这些参数应用于机器人系统。根据计算机仿真结果,与经典 PID 相比,所提出的方法 (ACO-PID) 给出了一个具有良好性能的系统。
摘要:能够运行 Grover 搜索算法的量子计算机可能会削弱对称密钥加密和哈希函数的安全强度,该算法可将暴力攻击的复杂度降低一个平方根。最近,量子方法研究提出使用 Grover 搜索算法结合对称密钥加密和哈希函数的优化量子电路实现来分析潜在的量子攻击。分析对密码的量子攻击(即量子密码分析)并估计所需的量子资源与评估目标加密算法的后量子安全性有关。在本文中,我们重新审视了超轻量级密码 CHAM 分组密码的量子实现,重点是优化其密钥计划中的线性运算。我们通过应用新颖的优化分解技术将 CHAM 的线性方程优化为矩阵。使用改进的 CHAM 量子电路,我们估算了 Grover 密钥搜索的成本,并在进一步降低成本的情况下评估后量子安全强度。
近年来,量子计算被认为是对我们日常通信中使用的安全 / 隐私算法的完整性的严重威胁。特别是,它促使人们加速研究捍卫后量子世界的密码学。为了了解我们当前使用的哪些加密协议容易受到此类攻击,我们旨在自己使用或模拟量子计算机来诊断加密弱点。最近的研究成果如 [6]、[18]、[19] 反映了这一点。为了优化针对给定协议的 Grover 搜索算法密钥恢复攻击,我们需要一个负担最小的协议量子电路实现。一个与计算负担成比例的指标是电路的深度。在量子计算机模拟中,深度优化的量子电路减少了计算模拟攻击结果所需的时间。在量子计算机的物理实现中,深度优化的电路减少了组件之间的接近度,从而减少了电路中的噪声量。
你必须能够上网,将关键信息传回云端,返回美国本土,对其进行处理,更新 MDF,然后重新投入战斗。因此,在 CDOL 环境中,这些事情变得非常具有挑战性。因此,我们研究如何解决这一问题的方法实际上是实现连接方法的弹性和冗余。这是你的步调计划的一部分。同样,当你在那个主要作战基地时,你可能已经拥有了光纤基础设施,拥有了 nipper、sipper,以及你今天享受的所有方式。你可能已经上线了 5G 功能,这有助于解决部分问题。但是,当你转移到其他一些有争议的地区时,你开始将步调计划稍微放慢一些,转向一些替代方法。
你必须能够上网,将关键信息传回云端,返回美国本土,对其进行处理,更新 MDF,然后重新投入战斗。因此,在 CDOL 环境中,这些事情变得非常具有挑战性。因此,我们研究如何解决该问题的方法实际上是实现连接方法的弹性和冗余。这是你的步调计划的一部分。同样,当你在那个主要作战基地时,你可能已经拥有了光纤基础设施,拥有了 nipper、sipper,以及你今天享受的所有方式。你可能已经上线了 5G 功能,可以帮助解决部分问题。但同样,当你转移到其他一些有争议的地区时,你会开始将这个步调计划稍微放慢一点,转向一些替代方法。