8大多数药物是针对其他癌症类型的批准的(例如乳腺癌)的靶向治疗方法,但在这里为患有不同类型的癌症患者(例如胰腺癌)的患者提供了“非标签”,因为分子分析和药物筛查表明潜在的匹配和益处。9要包含在实验治疗方案中,患者必须具有i)耗尽的治疗选择(或预计不久将耗尽标准治疗方案),ii)表现状态为0-1,iii)至少3个月的预期寿命,iv)正常器官功能,v)可测量的疾病,vi)可用于活检的转移性组织。10最初,目的还应在小鼠体内(或PDX)内部肿瘤,以便进行体内药物验证。由于遇到实际困难,该项目的这一部分被搁置了,我们在这里主要关注器官的使用。
慢性肾病是全球主要的健康问题,影响着全球 10% 的人口,每年导致数百万患者死亡。因此,开发能够帮助我们了解 CKD 发病机制并改进治疗策略的模型至关重要。人类诱导多能干细胞 (hiPSC) 的发现以及最近开发出的 3D 类器官生成方法,为体外模拟人类肾脏发育和疾病以及直接在人体组织上测试新药开辟了道路。在这篇综述中,我们将讨论用于模拟疾病的肾脏类器官领域的最新进展,以及这些模型在药物筛选中的预期应用。我们还将强调 CRISPR/cas9 基因组工程对该领域的影响,指出现有类器官技术的当前局限性,并讨论一系列可能有助于克服局限性并促进将这些激动人心的工具纳入基础生物医学研究的技术发展。
神经发育障碍(NDDS)是一组疾病,其中中枢神经系统(CNS)受到干扰,导致不同的神经系统和神经精神科特征,例如运动功能受损,学习,语言,语言或非语言交流。频繁的合并症包括癫痫和运动障碍。DNA测序技术的进步揭示了在越来越多的NDD中鉴定的可识别的遗传原因,强调了需要实验方法研究缺陷基因的需求和与异常脑发育有关的分子途径。然而,通过有限的获取患者衍生的脑组织的机会,可以预防研究特异性分子缺损及其在人脑功能障碍中的靶向方法。在这种情况下,在过去的十年中,干细胞技术和基因组编辑策略的进步导致了大脑器官的三维(3D)体外模型的产生,使人脑发育的精确阶段具有个性化诊断和治疗方法的目的。最近的进展允许生成神经元和非神经元细胞类型的3D结构,并开发全脑或区域特异性大脑器官,以研究体外关键的脑发育过程,例如神经元细胞的形态发生,迁移和连通性。在这篇综述中,我们总结了脑器官技术领域中的新兴方法学方法及其在剖析一系列小儿脑发育障碍的疾病机制的应用,并特别关注自闭症谱系障碍(ASDS)和癫痫性耐药性。
Antonella FM Dost, 1 , 2 , 3 , 17 Aaron L. Moye, 1 , 2 , 3 , 17 Marall Vedaie, 4 , 5 Linh M. Tran, 6 Eileen Fung, 7 Dar Heinze, 4 , 8 Carlos Villacorta-Marting, 5 , 19 , Ryan Heman Julian H. Kwan, 9 , 10 Benjamin C. Blum, 9 , 10 Sharon M. Louie, 1 , 2 , 3 Samuel P. Rowbotham, 1 , 2 , 3 Julio Sainz de Aja, 1 , 2 , 3 Mary E. Piper, 11 Preetida J. Bhetariya , 1 , 1 , T Roderick . Bronson, 12 Andrew Emili, 9 , 10 , 13 Gustavo Mostoslavsky, 4 , 8 Gregory A. Fishbein, 14 William D. Wallace, 14 , 15 Kostyantyn Krysan, 6 Steven M. Dubinett, 6 , 16 Jane Yanaga , 17 , 4 , 4 * Darrell * N. , * and Carla F. Kim 1 , 2 , 3 , 18 , * 1 Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA 2 Harvard Stem Cell Institute, Cambridge, MA 02133 Department of Genetics, Harvard Medical School, MA, Boston 5, USA 4 Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA 5 The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA 6 Department of Medicine, David Geffen School of Medicine at UCLA, University of Los Angeles, Los Angeles, CA, David Geffen School of Medicine, CA cine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA 8 Section of Gastroenterology and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA 9 Center for Network Systems Biology, Boston University, Boston, MA 02118, USA 10 Department of Biochemistry, Boston University School of Medicine, MA, MA of Public Health, Department of Biostatistics, Boston, MA 02115, USA 12 Rodent Histopathology Core, Harvard Medical School, Boston, MA 02115, USA 13 Department of Biology, Boston University, Boston, MA 02215, USA 14 Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA 15 Department of Pathology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA 16 Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA 17 These authors contributed equally 18. Contact: Contact Letters: Connected with Legal. JY), dkotton@bu.edu (DNK), carla.kim@childrens.harvard.edu (CFK) https://doi.org/10.1016/j.stem.2020.07.022
摘要。基本的神经生物学临床试验范式促使我们使用约束数学模型和个性化人源脑器官分析来预测临床结果并安全地开发新疗法。对大脑施加的物理约束可以指导对实验数据的分析和解释以及数学模型的构建,这些模型试图理解大脑的工作方式和认知功能的产生方式。为人源脑器官开发这些数学模型为测试有关人脑的新假设提供了机会。当涉及到测试有关大脑的想法时,需要在实验的可及性、操作性和复杂性之间取得谨慎的平衡,以便将神经生物学细节与更高级别的认知特性和临床考虑联系起来,我们认为应用于脑器官模型的基本结构功能约束提供了一条前进的道路。此外,我们表明这些约束出现在神经活动和学习的典型和新颖的数学模型中,并且我们提出基于约束的建模和表示的使用可以连接到机器学习以获得强大的互惠互利。
保留所有权利。未经许可不得重复使用。 (未经同行评审认证)是作者/资助者,他已授予 medRxiv 永久展示预印本的许可。
Krijn K. Dijkstra,1,11 Kim Monkhorst,2 Luuk J. Schipper,1,11 Koen J. Hartemink,3 Egbert F. Smit,4 Sovann Kaing,1,11 Rosa de Groot,5,6,6,11 Monika C. Wolkers,5,6,11 Hans clevers,5,6,11 Hans clevers,7,11 Es11 Em11 Embiest Embiest,vuiel Embiest ,, 1荷兰癌症研究所分子肿瘤学系 - 安东尼·范·李温霍克医院,1066 CX阿姆斯特丹,荷兰2个病理学系,荷兰癌症研究所 - 安东尼·范·李温尼克医院,1066 CX Amsterd Amberty and nerthland consern and terment and nerthland and terment and terment and terment and terrenand andern andern and andern and erons and erons and and erons and erons ,1066 CX阿姆斯特丹,荷兰4胸部肿瘤学系,荷兰癌症研究所 – 安东尼范列文虎克医院,1066 CX 阿姆斯特丹,荷兰 5 造血部门,Sanquin Research,1066 CX 阿姆斯特丹,荷兰 6 兰德斯坦纳实验室,阿姆斯特丹大学医学中心,AMC 地点,1105 AZ 阿姆斯特丹,荷兰 7 Hubrecht 研究所,乌得勒支大学医学中心,3584 CT 乌得勒支,荷兰 8 公主马克西玛儿科肿瘤中心,3584 CS 乌得勒支,荷兰 9 分子医学中心,乌得勒支大学医学中心,3584 CG 乌得勒支,荷兰 10 哈特维格医学基金会,1098 XH 阿姆斯特丹,荷兰 11 Oncode 研究所,乌得勒支,荷兰 12 主要联系人 *通信地址:e.voest@nki.nl https://doi.org/10.1016/j.celrep.2020.107588
源自多能干细胞的肾类器官成为使用体外细胞模型或体内动物模型的真正替代品。事实上,对肾脏胚胎发育过程中涉及的关键步骤的理解促成了协议的建立,该协议使多能干细胞能够分化为由各种肾细胞类型组成的高度复杂和有组织的结构。这些类器官与基于 iPSC 技术优势的一项主要应用相关:通过选择患有特定疾病的患者或使用 CRISPR/Cas9 系统等基因组编辑工具来控制 iPSC 基因组。这允许生成重现重要生理病理机制(例如肾多囊疾病中的囊肿形成)的肾类器官。本综述将重点介绍结合这两种尖端技术(即肾类器官分化和基因组编辑)的研究,并将描述在理解肾脏疾病的生理病理机制方面取得的主要进展,并讨论该领域剩余的技术障碍和前景。