• CDT 经理的职责很繁忙,需要很多技能和知识。该职位可能缺乏职业发展,导致高流动率和知识流失 • “1 + 3”模式意味着一些学生仍处于理学硕士的心态,一些学生将“1”视为他们教育的补充,而不是博士学位的第一年。教学元素强化了这一点,例如去听讲座。一些 CDT 通过将研究小组活动评估模块(例如评估期刊俱乐部)减少教学模块来管理这一点。 • 学生专注于出版物,导致他们对培训方面和“软技能”发展失去热情。CDT 需要更加强调其重要性,或者在培训中更具创造性。 • 疫情后,学生要求在家工作,或者不在 CDT 附近。这导致难以建立群体精神。 • CDT 结盟的学者通常不熟悉或不认同 CDT 思维方式,因此重要的是确保他们了解期望。
计算机系统可分为:通用系统或嵌入式系统。通用计算机是具有多种用途的设备,用户选择计算机要完成的任务。例如手机。嵌入式系统更加专业,它们只能做有限的事情,但它们做得很好。例如咖啡机。
赫尔顿定理指出,在存在投入产出联系的情况下,行业层面冲击对总体经济的影响完全由该行业的规模决定,而不管其在网络中的位置如何。本文认为,单独的生产网络结构是影响 GDP 增长和增长波动的重要渠道。首先,我展示的证据表明,随着 1970 年至 2017 年美国经济中的行业联系变得稀疏,即更多行业依赖少数中央投入供应商进行生产,GDP 增长放缓且波动性加大。在这些经验事实的推动下,我将投入产出联系嵌入到多部门实际商业周期模型中,并对特定部门生产力冲击的宏观经济影响进行非线性表征,以强调生产网络结构的关键作用。最后,我从数据中衡量实际的部门层面生产力冲击,将其输入模型,并研究模型隐含的生产网络结构、GDP 增长和增长波动之间的关系。我们的校准模型能够解释数据中观察到的约 20% 的商业周期波动。此外,我们的结果表明,网络连接的重要性超越了行业规模。
* 我们要感谢 Raphael Schoenle 慷慨地为我们提供对我们的分析至关重要的估计数据,还要感谢 Oleksiy Kryvtsov、Brendan Price、Seb Graves、Erick Sager、Alireza Tahbaz-Salehi 和美联储委员会研讨会参与者的有益讨论。本文表达的观点均为作者的观点,并不一定反映美联储委员会或联邦储备系统的观点。† Shaowen Luo 是弗吉尼亚理工大学经济学系助理教授,地址为 3016 Pamplin Hall, 880 West Campus Drive, Blacksburg, VA 24060, US (电子邮件:sluo@vt.edu) ‡ Daniel Villar 是美联储委员会研究与统计部经济学家,地址为 20th & Constitution Ave. NW, Washington, DC 20551, US (电子邮件:daniel.villar@frb.gov)
Karen MELIKYAN 亚美尼亚国立理工大学 (NPUA) 摘要:本文介绍了一种用于高速输入输出的时钟耦合占空比检测方法。在高速系统中,输出信号的占空比 (DC) 需要校准为 50% 才能在系统中获得可接受的性能。所提出的方法在系统输出中引入一个同步信号,占空比为 50%,最大工艺、电压和温度 (PVT) 误差为 1%。所提出的方法还补偿了 DC 检测器的输入参考偏移,这有助于提高整体系统性能。占空比检测方法采用 16nm 技术实现,电源为 1.2V。采用这种设计的架构,电路可以提供高达 5Gbps 频率的数据信号。实验结果表明,所提出的架构可靠,并且可以在高频间隔内工作。所提出的电路可以在多种标准的特殊串行链路中实现,例如外围组件互连 (PCI)、通用串行总线 (USB) 和双倍数据速率 (DDR)。关键词:占空比、检测器、高速、校准、工艺电压温度 (PVT) 简介 许多系统的速度逐年提高。DDR 系统就是其中之一 (Wang, 2015)(图 1)。在这些系统中提供良好的性能变得更加困难。因此,出现了参数问题,例如直流失真、偏移、抖动等。
电源电压,V DD1 、V DD2 和 V DD3 (见注 1) 6.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .输出电压范围,VO −0.3 V 至 V DD + 0.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 峰值输入电流(任何数字输入) ± 10 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .峰值总输入电流(所有输入)± 30 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 工作自然通风温度范围,TA:TLC1550I,TLC1551I −40 ° C 至 85 ° C . . . . . . . . . . . . . . . . . . . . TLC1550M −55 ° C 至 125 ° C . . . . . . . . . . . . . . . . . . . 存储温度范围,T stg −65 ° C 至 150 ° C . . . . . . . . . . . . . . . . . . . . . 10 秒外壳温度:FK 或 FN 封装 260 ° C . . . . . . . . . . . . . . . ..................................................................................................................................... 距外壳 1.6 毫米(1/16 英寸)处的引线温度持续 10 秒:J 或 NW 封装 260 °C ....................................................................................................................................
电源电压,V DD1 、V DD2 和 V DD3 (见注 1) 6.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .输出电压范围,VO −0.3 V 至 V DD + 0.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 峰值输入电流(任何数字输入) ± 10 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .峰值总输入电流(所有输入)± 30 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 工作自然通风温度范围,TA:TLC1550I,TLC1551I −40 ° C 至 85 ° C . . . . . . . . . . . . . . . . . . . . TLC1550M −55 ° C 至 125 ° C . . . . . . . . . . . . . . . . . . . 存储温度范围,T stg −65 ° C 至 150 ° C . . . . . . . . . . . . . . . . . . . . . 10 秒外壳温度:FK 或 FN 封装 260 ° C . . . . . . . . . . . . . . . ..................................................................................................................................... 距外壳 1.6 毫米(1/16 英寸)处的引线温度持续 10 秒:J 或 NW 封装 260 °C ....................................................................................................................................
电源电压,V DD1 、V DD2 和 V DD3 (见注释 1)6.5 V 。........................................输入电压范围,V I (任何输入) −0.3 V 至 V DD + 0.3 V ..。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。输出电压范围,V O −0.3 V 至 V DD + 0.3 V。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。峰值输入电流(任何数字输入)± 10 mA 。......................。。。。。。。。。。。。。.....................峰值总输入电流(所有输入)± 30 mA .....。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。....工作自然通风温度范围,T A :TLC1550I、TLC1551I −40 ° C 至 85 ° C ......................TLC1550M −55 ° C 至 125 ° C ................................存储温度范围,T stg −65 ° C 至 150 ° C .....。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。........10 秒外壳温度:FK 或 FN 封装 260 °C .............。。。。。。。。。。。。。。。。。。。。。。。。..距外壳 1.6 毫米(1/16 英寸)处的引线温度持续 10 秒:J 或 NW 封装 260 ° C ..........
DC-DC转换器设计为单个输出模型的输出电压调节引脚外,是向后兼容的。这些转换器的辐射硬化,它们的尺寸较小,重量较小,使其非常适合应用诸如地球座地球轨道卫星和深空探针等应用。他们表现出对环境变化的高度宽容。转换器具有固定频率,带有单个输出,正向拓扑与磁反馈一起使用。正向转换器因其简单的结构而选择设计电源单元,并在输入和输出之间提供完美的隔离。选择了500 kHz的开关频率,以使用PWM控制器UC2825降低转换器的大小,并使用前馈技术。抑制作用用于手动关闭转换器,并使用LCD Snubber来减轻MOSFET的应力,启动电路用于生成前向转换器的PWM控制器电路的初始电压。前进电压拓扑用于封闭环控制的快速响应,随着前向变压器的一侧的线路变化,输入侧具有保护电路,例如电压保护(OVP),电压保护(UVP)(UVP),电流保护(OCP)(OCP)(OCP),短路电路保护。二级侧电压被整理并过滤,以提供5V/8A的调节输出,功率为40W。
为缓解全球气候变暖与能源危机问题,各国都在大力发展可再生能源技术,风能、水电、光伏等大规模可再生能源的接入对系统运行调度和经济调度影响巨大。本文提出一种以风电、光伏发电为主要能源来源的风电-光伏-光热-水电系统经济调度方法。采用长短期记忆(LSTM)神经网络对风电和光伏功率进行预测,并利用拉丁超立方抽样(LHS)方法和同步缩减算法得到10个典型的风电和光伏功率场景。建立风电-光伏-光热-水电-电池日前经济调度模型,并考虑相关约束条件。利用光热、水电站、电池和可转移负荷作为灵活资源,提高风电和光伏发电的渗透率。最后通过3个案例验证了所提模型的可行性。结果表明:(1)LSTM神经网络可以很好地预测风电和光伏发电的输出功率,且均方根误差(RMSE)较小;(2)在可再生能源电力系统中引入可转移负荷和CSP电站可以有效降低风电和光伏发电的波动率和限电率。