在数十年的数据收集过程中,人们试图利用基于状态维护 (CBM) 方法中的运行时间序列数据来优化军用车辆的生命周期管理和可靠性、可用性和可维护性 (RAM),但遇到了许多障碍。这些障碍困扰着民用地面车辆、飞机和其他复杂系统的类似方法。运行数据的分析至关重要,因为它代表着对系统状态的连续记录。将基本的数据分析应用于运行数据可以提供诸如燃料使用模式或观察到的一辆车辆甚至一个车队的可靠性等见解。但是,监测这些数据的趋势并分析其随时间变化的模式可以深入了解车辆、复杂系统或车队的健康状况,预测平均故障时间或汇编物流或生命周期需求。由于从车辆传感器收集的数据量巨大,数据中观察到的集群与故障或计划外维护事件之间缺乏关联,以及时间序列数据的无监督学习技术不足,因此在运营时间序列数据集上进行此类高性能数据分析 (HPDA) 一直很困难。我们提出了一种在车辆运行数据中发现模式的方法,该方法确定了预测即将发生故障的可能性的模型,称为基于参数的指标 (PBI)。我们的方法是一个数据驱动的应用程序