电动系统中的热管理是一个具有挑战性的工程分支,因为对快速冷却速率并抑制电气排放的关键要求。聚合物电解质膜燃料电池(PEMFC)是需要两个条件的系统的一个示例。由于冷却液可确保不重要的电势损失,但使用低电导率的传统去离子水的使用只有对PEMFC系统尺寸的重大惩罚才能实现较大的电势损失。纳米流体冷却剂的配方对于在正常环境下工作的系统非常成功,但是针对活性电气系统的新纳米流体冷却剂的研究相对较新。本文报告了对杂交1%V tioz-sioz(以50:50比率)纳米流体分散在60:40的水/乙烯乙二醇溶液中分散的纳米流体的基本研究。由加热的矩形通道组成的测试台,并在0.7 V和3处结合了连续电源,以模拟PEMFC堆栈冷却的工作条件。测试变量是加热器温度和冷却剂的雷诺数(300至700)。分析了系统和冷却剂的冷却特性的变化和变化。与水和水/乙二醇冷却剂相比,杂化纳米流体(200%至250%)实现了冷却率的显着提高(200%至250%)。电气
对氧气还原反应(ORR)活性的电活性和具有成本效益的电催化剂的简单设计对于质子交换膜燃料电池(PEMFC)的商业化中的能量转化至关重要。在本文中,我们合成了稳定的Ni的稳定的电活性双金属催化剂,该催化剂以低负载的Pt纳米颗粒锚定,并用作催化剂整合的支持材料(PT3-NI/G)。它表现出最大的电化学表面积(ECSA,108.56 m2/gpt),质量活性(2.2 a mgpt)和特定活性(3.47 mA cm -2),表示出色的ORR活性。此外,通过0.2 mgPTCM -2 pt3-ni/g作为阴极的可伸缩PEMFC制造,活性面积为25 cm 2,不锈钢-314L(SS-314L)用作蛇纹石流场。此策略在电流密度1.59 a cm -2时提供了71.25 W mgpt -1的最大功率输出。此外,即使连续循环4小时,基于PT3-Ni/c/pt/c,基于PT/C的PT/C系统也提供了恒定的功率输出(68.75 W mgpt -1)。
目前正在开发多种类型的能源技术,重点关注能源安全和可持续性问题。在这些不同的技术中,燃料电池微电网系统是解决能源匮乏的孤立和岛屿社区(尤其是菲律宾等群岛国家)的合适解决方案。燃料电池技术的选择多种多样,它们之间的弱点、优势和特点相互冲突,这使得选择变得困难。本研究采用称为 VIKOR(Vise Kriterijumska Optimizacija Kompromisno Resenje)的多标准决策方法,作为一种系统方法,对微电网分布式系统中固定电源应用的不同燃料电池技术进行排名。竞争技术的运行特性基于技术和经济指标进行评估——能源效率(%)、寿命(小时)、功率密度(kW/m 3 )、比功率(W/kg)和成本($/kW)。不同指标的数据来自文献中可用的研究,并利用 VIKOR 算法进行评估。结果表明,聚合物电解质膜燃料电池 (PEMFC) 是最合适的燃料电池技术,评估指数 Q = 0。不同燃料电池技术的排名如下:PEMFC > PAFC > SOFC > MCFC > AFC > DMFC。PEMFC 具有高比功率、高功率密度和紧凑设计等优点。本研究结果表明,VIKOR 可用于评估各种技术和经济指标。这种方法可以指导决策者为偏远社区的微电网电力系统选择最佳的燃料电池技术。
对氧气还原反应(ORR)活性的电活性和具有成本效益的电催化剂的简单设计对于质子交换膜燃料电池(PEMFC)的商业化中的能量转化至关重要。在本文中,我们合成了稳定的Ni的稳定的电活性双金属催化剂,该催化剂以低负载的Pt纳米颗粒锚定,并用作催化剂整合的支持材料(PT3-NI/G)。它表现出最大的电化学表面积(ECSA,108.56 m2/gpt),质量活性(2.2 a mgpt)和特定活性(3.47 mA cm -2),表示出色的ORR活性。此外,通过0.2 mgPTCM -2 pt3-ni/g作为阴极的可伸缩PEMFC制造,活性面积为25 cm 2,不锈钢-314L(SS-314L)用作蛇纹石流场。此策略在电流密度1.59 a cm -2时提供了71.25 W mgpt -1的最大功率输出。此外,即使连续循环4小时,基于PT3-Ni/c/pt/c,基于PT/C的PT/C系统也提供了恒定的功率输出(68.75 W mgpt -1)。
摘要 燃料电池被认为是弥合未来清洁能源路径与当前“肮脏能源”路径之间差距的有希望的候选者。在各种类型的燃料电池中,PEMFC 因其更高的能量密度和环保特性(如果使用氢作为燃料)而用于多种应用。某些类型的燃料电池(例如 PEMFC)不仅可用于发电,还可用作电解器以收集氧气和氢气用于太空应用。回收的氧气可用于满足航天器中的氧气需求,而回收的氢气可用于发电。其他类型的燃料电池(例如微生物燃料电池 (MFC))可同时处理废水并发电。然而,存在一些挑战阻碍燃料电池发挥其全部潜力。大规模商业化仍然需要解决影响其可靠性、耐用性和坚固性的技术问题。因此,资源回收方面仍然存在重大挑战,例如成本高、缺乏合适的贵金属催化剂以及使用寿命缩短。首先要克服技术难题,赢得公众信任,从而催化燃料电池的广泛商业化推广,并适当促进对资源回收的更深入研究。关键词:燃料电池;优势;能源;挑战;氢能。
在此,报告了一种新的直接合成途径,导致具有结晶框架和NIWO 4-石墨烯纳米片(GNP)复合材料的中孔Niwo 4。ni和w通过共沉淀合成途径组装成介孔钨型对称性及其与GNP的复合材料用作电催化剂的支持,在酸性反应(ORR)和氢氧化反应(HOR)中,PT含量降低(8 wt。%),氧气还原反应(ORR)中的PT含量降低(8 wt。%)。对与晶体和多孔结构,形态学方面以及旨在解释电化学特性的表面化学相关的修饰进行了全面评估。发现在合成过程中GNP的存在主要导致NIWO 4纳米晶体的生长增强,并引起表面化学的变化。电化学结果表明,与最初的NIWO 4和PT/NIWO 4样品相比,将GNP引入NIWO 4复合支持导致PT电催化剂的活性显着改善,以及这些催化剂与碳的机械混合物的活性。在8 wt上获得的混合动力学扩散控制区域确定的氢氧化的质量活性。%PT/NIWO 4 -GNP催化剂与商业20 wt。%pt/c Quintech催化剂相比明显更高。 我们的全面结构和表面化学评估表明,使用更广泛的燃料,该复合材料是PEMFC的可行电催化剂。%PT/NIWO 4 -GNP催化剂与商业20 wt。%pt/c Quintech催化剂相比明显更高。我们的全面结构和表面化学评估表明,使用更广泛的燃料,该复合材料是PEMFC的可行电催化剂。关键字:NIWO 4,复合支持的电催化剂,氧还原反应,氢氧化反应,双功能电催化剂
在获得化学和工艺工程工程学位以及“技术与创新管理”专业硕士学位后,她担任了 3 年的水处理设计工程师,然后在 CEA Leti 担任了 6 年的工艺工程师和微电子洁净室流体公用设施专家。2011 年,她加入 CEA Liten,担任项目经理,负责能源系统评估,主要是氢领域。作为清洁氢 JU、法国研究机构和工业伙伴关系资助的研究项目的一部分,她进行了大约 30 项评估研究,为 PEMFC、SOEC/SOFC 和高压罐等氢组件开发了参数化成本和 LCA 模型,并开展了结合这些技术的应用案例研究。
摘要 — 通过收集和整理历史数据和典型模型特征,使用 Simulink 开发了基于氢能存储系统 (HESS) 的电转气 (P2G) 和气转电系统。详细研究了所提出系统的能量转换机制和数值建模方法。提出的集成 HESS 模型涵盖以下系统组件:碱性电解槽 (AE)、带压缩机的高压储氢罐 (CM 和 H 2 罐) 和质子交换膜燃料电池 (PEMFC) 电堆。基于典型的 UI 曲线和等效电路模型建立了 HESS 中的单元模型,用于分析典型 AE、理想 CM 和 H 2 罐和 PEMFC 电堆的运行特性和充电/放电行为。在配备风力发电系统、光伏发电系统和辅助电池储能系统 (BESS) 单元的微电网系统中模拟和验证了这些模型的有效性。 MATLAB/Simulink 仿真结果表明电解器电堆、燃料电池电堆及系统集成模型能够在不同工况下工作。通过测试不同工况下 HESS 的仿真结果,分析了氢气产出流量、电堆电压、BESS 的荷电状态 (SOC)、HESS 的氢气压力状态 (SOHP) 以及 HESS 能量流动路径。仿真结果与预期一致,表明集成 HESS 模型能够有效吸收风电和光伏电能。随着风电和光伏发电量的增加,HESS 电流增加,从而增加氢气产出量来吸收剩余电量。结果表明 HESS 比微电网中传统 BESS 响应速度更快,为后期风电-光伏-HESS-BESS 集成提供了坚实的理论基础。
氢技术提供了有前途的前景,可以在更可持续的世界中应对未来的能源需求。鉴于他们的潜力,他们的技术发展是许多政策的核心。因此,燃料电池的精确建模对于优化其控制并提高其性能至关重要。本文始于对有关物质运输的原理以及用质子交换膜(PEMFC)计算燃料电池电压的最新进展的深入分析。它通过介绍相关方程,其适用性和基本假设来详细了解这些原理,这构成了未来模型的发展。基于这项工作,已经开发了一种使用成品差异方法的PEMFC的一个维度,动态,两相和等温模型。该模型构成了功能块模型的简单性与数字流体力学模型的准确性(英语:计算流体动力学模型)之间的妥协,从而提供了内部状态的精确描述,同时对计算的需求较低。此外,在过压的计算中引入了一种新的物理参数,液体水饱和系数(S LIM)以及相应的公式。开源,基于此模型并在Python中实施的Alphapem软件,然后开发并发布。模型A此新参数将电压下降连接到高电流密度与催化层中存在的液体水量和燃料电池的工作条件。这种新建立的燃料电池内部状态及其操作条件之间的联系有望优化其控制,从而改善其性能。他提出了一个模块化体系结构,该体系结构有助于新功能的创建,并包括友好的图形界面。alphapem还结合了一种自动校准方法,可以通过研究的特定燃料电池对模型进行精确的校准。在使用此软件时,可以有效地计算有关所有当前密度的内部状态的详细信息。以极化和EIS曲线为特征的静态和动态性能也可以在不同的工作条件下进行模拟。此外,Alphapem为在车载系统中使用高级电池的高级模拟开辟了道路,因为它可以在动态操作条件下进行精确且快速的响应。
●使用miRNA检测,PI,DST-BDTD筛查乳腺癌的微流体设备仪器,2019-2021●由Bill和Melinda Gate Foundation资助的TB药物依从性的自动药丸分配器的设计和开发。pi,2014年 - 2015年演示●基于PDM的平台 /基于微纤维化的缩影,用于检测视网膜母细胞瘤患者血清中的致癌miRNA,由NPMASS,DRDO,PI,PI,PI,2011-2011-2011-2011- 2014年基金●由IGCAR,PI,PI,PI,2010年至2010年,型号开发的技术开发,2010年至2010年,● NPMASS,ADA,CO-PI,2011年至2014年●一种用于空气呼吸质子交换膜燃料电池(PEMFC)堆栈的新型水和热管理技术,Co-Pi,DST -2009-2012●过程定义,工作中心选择,制造和组装,G Switch和G Switch,Co-Pi,ADA,ADA,Govt,Govt。印度,2010-2012经验: