• 我们的目标是通过研究、开发、应用和转让可扩展的自动化软件工程技术来提高 NASA 软件的可靠性和稳健性,以及软件工程的生产力,以满足 NASA 的软件挑战。• 我们借鉴了计算机科学的许多技术(例如程序验证、自动推理、模型检查、静态分析、符号评估和机器学习),并将它们应用于软件的验证和确认以及代码生成。
• 我们的目标是通过研究、开发、应用和转移可扩展的自动化软件工程技术来应对 NASA 的软件挑战,从而提高 NASA 软件的可靠性和稳健性以及软件工程的生产力。
• 我们的目标是通过研究、开发、应用和转让可扩展的自动化软件工程技术来提高 NASA 软件的可靠性和稳健性以及软件工程的生产力,以满足 NASA 的软件挑战。 • 我们借鉴了计算机科学中的许多技术(例如程序验证、自动推理、模型检查、静态分析、符号评估和机器学习),并将它们应用于软件的验证和确认以及代码生成。
• 我们的目标是通过研究、开发、应用和转让可扩展的自动化软件工程技术来提高 NASA 软件的可靠性和稳健性以及软件工程的生产力,以满足 NASA 的软件挑战。 • 我们借鉴了计算机科学中的许多技术(例如程序验证、自动推理、模型检查、静态分析、符号评估和机器学习),并将它们应用于软件的验证和确认以及代码生成。
• 我们的目标是通过研究、开发、应用和转让可扩展的自动化软件工程技术来提高 NASA 软件的可靠性和稳健性以及软件工程的生产力,以满足 NASA 的软件挑战。 • 我们借鉴了计算机科学中的许多技术(例如程序验证、自动推理、模型检查、静态分析、符号评估和机器学习),并将它们应用于软件的验证和确认以及代码生成。
MADe 中的分析方法支持整个设计、操作和维持生命周期的 RAM 活动。基于 MADe 平台模型的通用配置和结构开发的可靠性框图 (RBD) 捕获了项目操作和故障依赖关系。基于可用系统信息和成熟度的项目级可靠性通过直接输入数据、可靠性分配和可靠性预测模型输入。
性能监控/趋势:PTMS(IPP、过滤器、储液器、聚结器等)液压系统(泵、过滤器、储液器、蓄能器)燃油系统(泵、阀门、热交换器)武器舱门驱动(泵速和斜盘角度)旋转执行器、EHA 武器架 OBIGGS 过滤器
近年来,预测与健康管理 (PHM) 已成为航空航天领域的热门话题。机载系统的健康评估和剩余使用寿命估计提供了多种优势,主要与提高分析能力和减少维护干预(从而降低运营成本)有关。因此,航空航天业有兴趣确定和定义有效的策略,既用于在新一代机载系统中引入原生 PHM 功能,也用于改造现有系统。本文提出了一种可扩展部署机载系统 PHM 技术的策略,特别关注边缘计算能力。介绍了不同的参考场景(从基于云的处理到仅本地处理),并详细讨论了以边缘为中心的 PHM 架构,并解决了相关挑战。描述了所提出的基于边缘的解决方案的设计和验证,特别提到了它对现有数据分析框架的支持。然后根据涉及代表性飞机制动系统的参考航空航天用例评估该解决方案,重点关注
摘要 由于马孔多事件后引起了广泛关注,防喷器 (BOP) 主题引发的敏感性为监管机构、客户和钻井承包商本身树立了高标准。基于这些支柱,可靠性概念已不断应用于石油工业,特别是在井安全和控制系统中,设备在需要时可靠且可操作是极其重要的。与此同时,在需要高可靠性的关键行业中广泛使用的基于状态的维护 (CBM) 和预测健康管理 (PHM) 概念被认为是 BOP 系统管理的未来。在此背景下,本文旨在回顾基于状态的维护和预测健康管理的文献,结合可靠性概念,并使其能够应用于 BOP 健康管理。本文确定了支持主题所需的不同概念,并通过研究和选择标准,汇集了一系列出版物以获得一致的理论框架。这项研究概述了高可靠性行业中使用的重要技术及其在 BOP 系统上的应用方式,它还提供了许多有用的参考和案例研究,以协助井控和操作安全方面的进一步开发工作。
2 硬件分析 风扇是一种空气流动装置,利用由电动机通过电子或机械命令驱动的旋转叶片或叶轮 [4]。根据风扇的定义,旋转叶片和电动机是帮助风扇实现其所需功能(即空气流动)的核心部件。通常,风扇包含的组件种类可能因供应商和客户的要求而有所不同。例如,尽管存在由于金属刷退化而产生金属颗粒和电火花等潜在副作用,但风扇中可以使用有刷电机代替无刷电机。但是,无论具体设计如何,风扇中核心组件的功能都不会改变。选择用于消费电子应用的 BLDC 风扇进行硬件分析。图 1 展示了风扇的两个核心元素;即电动机和叶片。在图 2 中,电动机被拆解成两个部分:风扇外壳内的定子和转子。在电动机中,叶片直接安装在转子上。转子中的条形永磁体具有足够的柔韧性,可以装入转子外壳中,并与