摘要 - 大型语言模型(LLM)引起了人们的重大关注,因为它们显示出人工通用智能(AGI)的令人惊讶的迹象。人工智能和大型语言模型可用于各种良好目的,例如用于创造知识的数字助手。但是,如此强大的模型也可以具有潜在的风险。除其他问题和风险外,AI模型可以对数据和用户构成的安全和隐私风险。在本文中,我们讨论了多项式和矢量空间等数学结构以及多项式和矩阵矢量函数的隐私保留委派如何用于将计算模型(包括LLMS)转换为隐私保护计算模型。此外,我们重点介绍了一些众所周知的加密结构以及一些可以改进LLM的解决方案,从某种意义上说,它们可以保留数据的隐私和安全性以及用户。总体而言,我们在本文中介绍的隐私性和零知识LLM可能是潜在的解决方案,可以在某种程度上且合理地保留数据和用户的隐私。更重要的是,也许应该对AI模型进行公开可信的数据培训;训练有素的模型应在当地被压缩和使用。索引术语 - 私有的计算,私人多样性计算,隐私提供大语言模式,安全计算,完全同源性加密,Peovacy-Preservice机器学习,零知识范围,零知识模型,可信度的AI,可靠的AI,安全和隐私风险
如图1所示,实验在由80km光纤轴级联构成的480km光纤链路上进行。传输系统的发射机和接收机分别放置在链路的两端,在光纤链路上放置双向掺铒光纤放大器(Bi-EDFA)。实验结果如图2所示,当PLL关闭时,传输系统的频率稳定度为4.65×10 -14 @ 1s和4.66×10 -17 @ 10,000s。当PLL关闭时,传输系统的频率稳定度为1.54×10 -13 @ 1s和1.17×10 -16 @ 10,000s。实验结果表明,对于长距离频率传输,PLL可以明显提高传输系统的频率稳定度。从接收机恢复出的同步频率信号的频率稳定度比铯钟的稳定度要好,满足了长距离频率传输的需要。
I. 引言随着通信系统追求更高的性能,低抖动时钟生成问题变得更具挑战性。例如,以 112 Gb/s 或 224 Gb/s 运行的 PAM4 发射器可以结合 56 GHz 锁相环 (PLL) 进行多路复用。这样的应用对设计提出了三个条件。首先,对于 224 Gb/s 的数据速率,PLL 抖动必须远低于符号周期,例如约 100 fs。其次,PLL 最好实现为小数 N 环路,以便以不同的晶体频率运行并可能纠正晶体误差。第三,多通道系统使得每通道使用低功耗、紧凑的 PLL 设计成为可取的,而不是在通道和长互连上分配 56 GHz 时钟。在此频率范围内,先前的小数 N 分频设计已实现 200 至 500 fs 的均方根抖动,同时功耗为 31 至 46 mW,所需芯片面积为 0.38 至 0.55 mm2 [1], [2], [3]。本文提出了一种小数 N 分频 PLL 架构和多种电路技术,可实现 110 fs 的均方根抖动和 23 mW 的功耗。实验原型采用 28 纳米 CMOS 技术制造,占用有效面积为 0.1 mm2。第二部分介绍了这项工作的背景。第三部分介绍了所提出的有限脉冲响应 (FIR) 滤波器和
I. 引言 锁相环 (PLL) 抖动问题表现在各种系统中,特别是在通信和数据转换器中。近年来,有几种趋势导致了对低抖动的需求。首先,更高的数据速率使得链路中大多数阶段的时序预算收紧。其次,有线和无线媒体中可用的带宽有限,需要采用频谱高效的调制方案,这进一步限制了时钟和本地振荡器 (LO) 生成中可容忍的抖动。第三,随着模数转换器 (ADC) 以更高的速度和分辨率为目标,其采样时钟抖动必须相应下降。最先进的 PLL 设计已经在 5.5 GHz 至 16 GHz 频率下实现了 50 至 75 fs rms 范围内的抖动值 [1]–[6]。先前的研究 [7]–[10] 已经研究了 PLL 中的抖动现象。本文的目的是制定 PLL 抖动和功耗之间的权衡,并预测前者降低到 10 fs 以下时的设计问题。通过扩展 [11] 中的工作,我们得出了表明未来面临巨大挑战的趋势。第二节概述了当今理想的抖动值,第三节介绍了我们的分析框架。第四节讨论了振荡器相位噪声的影响,第五节还考虑了参考贡献。第六节涉及电荷泵 (CP) 噪声。第七节和第八节分别分析了抖动对 ADC 的影响以及可以减轻抖动功率权衡的因素。
摘要电荷泵(CP)广泛用于现代相锁环(PLL)实现中。CP电流不匹配是PLL输出信号中静态相位和参考启动的主要来源。在本文中,提出了一个在较大输出电压范围内具有小电流不匹配特性的新型CP。专门设计的双重函数电路使用统一反馈操作放大器和电流镜子,以减少当前不匹配的输出电压,直到电源电压(V DD)或接地(GND)。和其他反馈晶体管用于减少频道长度调制效果的影响。延迟仿真结果表明,在40 nm CMOS技术中提出的CP的外电流为115 µA。此外,当前的不匹配小于0.97 µ a或0.84%的输出电压范围为0.04至1.07 V,覆盖1.1 V电源的93.6%以上。因此,所提出的CP最大化动态范围,并减少CP-PLL的相位集合和参考启动。关键字:电荷泵,当前的不匹配,动态范围,相锁定的环路分类:集成电路(内存,逻辑,模拟,RF,传感器)
[1] P. Denholm,T。Mai,B。Kroposki,R。Kenyon和M. O'Malley,Wartia和Power Grid:无旋转的指南。编号NREL/TP-6A20-73856,国家可再生能源实验室,戈尔登,2020年5月。[2] J. Wang,A。Pratt和M. Baggu,“用于平滑微电网过渡的网格形成逆变器的综合同步控制”,2019年IEEE Power and Energy Society股东大会(IEEE PES PES GM),pp。1-5,2019年8月。[3] J. Wang,B。Lundstrom和A. Bernstein,“非PLL网格形成逆变器的设计,用于平滑的微电网过渡操作”,2020年IEEE Power and Energy Society Greally Mection(IEEE PES PES GM),2020年8月。[4] M. S. Golsorkhi,M。Savaghebi,D.D.Lu,J.M。Guerrero和J. C. Vasquez,“基于GPS的控制框架,用于准确的电流共享和微电网中的电源质量改进”,《电力电子产品IEEE交易》,第1卷。32,pp。5675–5687,2017年7月。[5]“ IEEE的互连和互连和互操作资源与相关电力系统接口的互操作性标准”,IEEE STD。1547-2018,4月2018。[6]“ IEEE设计,操作和集成与电力系统的设计,操作和集成指南”,IEEE STD。1547.4-2011,2011年7月。
学生熟悉加性噪声的起源、影响和对 PLL 行为的分析。他/她能够基于 Neeson 公式和 Hajimiri 提出的线性时变噪声模型以及使用脉冲灵敏度函数来分析噪声性能。(MK1)(MK2)(MI1)(MG3)
摘要 — 电网形成逆变器面临的两个主要问题是同步和相位参考不准确。先前的文献已经解决了这些问题,解决方案包括使用 GPS 和主动同步模式来约束相位参考,但这些方法尚未整合在一起。本文旨在通过一种新颖的时间约束主动同步相位参考来统一解决方案并开发一种使逆变器保持同步和电网形成的方法,而不会出现相位参考不准确。此外,这项工作扩展了先前关于主动同步的文献,包括黑启动功能。最后,在 Simulink 中对时间约束相位参考进行了评估,将其作为能够适应任何同步情况的电网形成逆变器,并通过现代标准的关键指标进行评估。索引术语 — 电网形成逆变器、GPS、时间约束、非 PLL、下垂、同步、黑启动
摘要 — 本文开发了一种电网形成 (GFM) 逆变器控制器,该逆变器既可以用作 GFM 也可以用作电网馈电源,通过使用一种新颖的同步方法,可以改善微电网在电网切换期间的运行。此外,该控制器避免使用锁相环 (PLL),逆变器能够通过自生电压和频率与电网同步。这可以防止逆变器在其输出中复制任何电网电压扰动 - 这是许多使用 PLL 的电网连接逆变器的主要缺点。为了实现快速同步,在逆变器启动和微电网重新连接操作期间都采用了主动同步控制,并提出了一种协调逆变器与微电网控制器和电网互连断路器同步的方法。多个微电网过渡操作和非计划孤岛事件的仿真结果表明,所开发的非 PLL 并网 GFM 逆变器控制器和同步方法能够有效地将逆变器和微电网与电网同步,避免微电网过渡操作期间的相位跳跃,并且与传统配置相比能够改善微电网孤岛瞬态。