多不饱和脂肪酸(PUFA)对氧化和炎症性过程有调节作用。这项研究旨在确定172名受试者队列中氧化应激和炎症的循环标志物之间的关系。人口被性别分为三个年龄段:成年人(18 - 64岁,n = 69),老年人(65 - 89岁,n = 54)和长寿(LLIS,90 - 111岁,n = 49)。使用气相色谱法对全血PUFA含量进行了定量。添加了C反应蛋白(CRP),副氧酶(PON),Trolox等效抗氧化剂(TEAC)和马发二醛(MDA)的血清水平。我们的结果表明,成年女性中较高的omega-3(N-3)指数是MDA浓度较低的预测指标(P = 0.038)。相反,总N-3 PUFA和总N-6 PUFA与老年女性和LLI男性的MDA值呈正相关(P <0.05),而总N-6 PUFA与LLI女性的MDA水平成反比(P <0.05)。有趣的是,总N-3 PUFA和N-3指数的浓度增加与LLI男性的TEAC值呈正相关(P = 0.007),而蛛网膜酸(AA)/Eicosapentaenoic(EPA)比率(EPA)比率与LLI Females中的LLI aCEAR呈异常相关。这些发现表明,长寿雌性中的细胞抗氧化能力与AA/EPA比的变化成反比,而N-3 PUFA可能会增强长寿男性的血液抗氧化能力。总体而言,我们的研究强调了不同年龄段的PUFA轮廓与氧化应激和炎症标记之间的复杂性,性别特异性相互作用。
结果:在参与者中,有44.34%的人患糖尿病前期和13.16%的患者。在多元分析中,我们发现MUFA,PUFA和某些亚型的摄入量与美国人的前糖尿病和T2DM风险负相关。与最低三位一体中的成年人相比,最高的MUFA(PUFA)三位一体分别为50%(49%)和69%(68%)降低了糖尿病和T2DM的风险。此外,MUFA和PUFA对糖尿病前和T2DM的亚型的影响是不同的。MFA 18:1,MFA 20:1,PFA 18:2和PFA 18:3的摄入量较高,MFA 16:1和PFA 20:4的较高的tertile摄入量与糖尿病和T2DM的较低风险有关。同样,MUFA,PUFA和亚型对糖尿病前期和T2DM的影响在不同的年龄组之间也有所不同,随着年龄的增长。
背景:我们前瞻性地检查了日本成年人中总脂肪和脂肪酸摄入与2型糖尿病(T2D)的关联。方法:这项研究是使用日本协作队列研究的数据进行评估(JACC)进行的。经过验证的食物频率问卷评估了总脂肪和脂肪酸的摄入量。糖尿病。多变量逻辑回归分析,以计算在调整潜在混杂因子后总脂肪和脂肪酸摄入量的五分位数中,入射T2D的几率和95%的置信区间(CI)。结果:这项研究包括1988年至1990年在JACC中招收的19,088名非糖尿病参与者(年龄范围为40 - 79岁)。在5年的研究期间,494名参与者开发了T2D。The OR of T2D for the highest versus lowest quintiles was 0.58 (95% CI, 0.37 – 0.90) for total fat, 0.78 (95% CI, 0.51 – 1.20) for saturated fatty acid (SFA), 0.55 (95% CI, 0.35 – 0.86) for monounsaturated fatty acids (MUFA), 0.61 (95% CI, 0.39 - 0.96)用于多不饱和脂肪酸(PUFA),N-3 PUFA的0.64(95%CI,0.42 - 0.99),N-6 PUFA的0.70(95%CI,0.45 - 1.09)。总脂肪和脂肪酸(SFA和N-6 PUFA除外)的摄入量与男性T2D成反比。女性的总脂肪和脂肪酸摄入与T2D无关。结论:日本男性中T2D的总脂肪,MUFA,PUFA和N-3 PUFA的摄入量更高。
背景:我们前瞻性地检查了日本成年人中总脂肪和脂肪酸摄入与2型糖尿病(T2D)的关联。方法:这项研究是使用日本协作队列研究的数据进行评估(JACC)进行的。经过验证的食物频率问卷评估了总脂肪和脂肪酸的摄入量。糖尿病。多变量逻辑回归分析,以计算在调整潜在混杂因子后总脂肪和脂肪酸摄入量的五分位数中,入射T2D的几率和95%的置信区间(CI)。结果:这项研究包括1988年至1990年在JACC中招收的19,088名非糖尿病参与者(年龄范围为40 - 79岁)。在5年的研究期间,494名参与者开发了T2D。The OR of T2D for the highest versus lowest quintiles was 0.58 (95% CI, 0.37 – 0.90) for total fat, 0.78 (95% CI, 0.51 – 1.20) for saturated fatty acid (SFA), 0.55 (95% CI, 0.35 – 0.86) for monounsaturated fatty acids (MUFA), 0.61 (95% CI, 0.39 - 0.96)用于多不饱和脂肪酸(PUFA),N-3 PUFA的0.64(95%CI,0.42 - 0.99),N-6 PUFA的0.70(95%CI,0.45 - 1.09)。总脂肪和脂肪酸(SFA和N-6 PUFA除外)的摄入量与男性T2D成反比。女性的总脂肪和脂肪酸摄入与T2D无关。结论:日本男性中T2D的总脂肪,MUFA,PUFA和N-3 PUFA的摄入量更高。
野生种田芥(Lepidium campestre)有潜力成为适合北欧气候的新型覆盖作物和油籽作物。然而,由于多不饱和脂肪酸 (PUFA) 和芥酸 (C22:1) 含量高,其种子油目前不适合大多数食品、饲料和工业应用。由于这些不良脂肪酸的生物合成受一些众所周知的主要显性基因控制,因此使用 CRISPR/Cas9 敲除这些基因将更有效地提高种子油的质量。为了提高所需油酸 (C18:1) 的含量,并降低 PUFA 和 C22:1 的含量,我们利用基于原生质体的 CRISPR/Cas9 基因敲除系统,针对三个重要基因脂肪酸延长酶 1 ( FAE1 )、脂肪酸去饱和酶 2 ( FAD2 ) 和还原油酸去饱和酶 1 (ROD1 )。通过敲除 FAE1 ,我们获得了一个几乎没有 C22:1 的突变株系,但 C18:1 增加到 30%,而野生型为 13%。敲除 ROD1 导致 C18:1 增加到 23%,PUFA 含量中等但显著降低。 FAD2 的敲除与杂合 FAE1fae1 基因型相结合,产生了突变株系,其 C18:1 含量高达 66%,PUFA 含量极低,C22:1 显著降低。我们的研究结果清楚地表明,CRISPR/Cas9 具有快速改良水芹性状的潜力,这将加快其驯化过程。本研究产生的突变株系可用于进一步育种,以将水芹培育成可行的作物。
单细胞油(SCO)对于从生物燃料到营养佐剂,药品应用和有价值产品的生物转换的各种目的具有深刻的兴趣。已显示许多微生物产生并积累了SCO。在本研究中,进行了有条理的尝试,以将潜在的SCO生产者与印度水源分离。来自阿拉伯海的盐水样品和印度冷水河(北阿坎德邦Pindhari河)的淡水样品进行了研究,并研究了出现脂质生产微生物的研究。。通过气相色谱法(GC)研究了由选定分离株组成的脂肪酸的类型,并通过气相色谱/质谱法(GC/MS)确认。脂质谱图表明,这项研究中的分离物在经济和营养上产生了有价值的单不饱和脂肪酸(MUFA),例如棕榈酸和油酸。另外,也可以看到来自阿拉伯海的两个分离株产生有价值的欧米茄3多不饱和脂肪酸(PUFA),例如eicosapentanoic Acid。淡水产生的亚油酸是omega-6 pufa。选定的分离株的生化特征被表征,并通过16S rRNA测序鉴定出分子。ofrnithinibacillus sp。 Marseille-P3601菌株在我们的研究中从冷水河Pindhari,北阿坎德邦发现能够产生PUFA。ofrnithinibacillus sp。Marseille-P3601菌株在我们的研究中从冷水河Pindhari,北阿坎德邦发现能够产生PUFA。
抽象的简介和目的。长链ω-3 PUFA,例如DHA和EPA,通常在藻类和鱼类中以高量存在。dha特别是对大脑的正确进展和功能至关重要,因为它是大脑中ω-3 PUFA的主要结构成分。这使其成为神经膜磷脂的必不可少元素。本文的目的是介绍omega-3酸在神经系统功能中的帮助。知识状态。文本讨论了文献综述,重点是omega-3脂肪酸的影响。多不饱和脂肪酸(PUFAS)对于整体健康至关重要,并且已广泛研究了它们对人类福祉和疾病管理的贡献。最近的研究表明它们在预防和治疗各种疾病方面的有效性。Omega-3 Pufas已被确定为治疗剂,特别是在抗击心血管和神经退行性疾病等炎症状况时。材料和方法。本文的目的是介绍omega-3脂肪酸增强的好处。我们使用了概述大脑中多不饱和脂肪酸的特性的出版物,使用PubMed平台回顾了呈现多不饱和脂肪酸结果的文章。评论包括关键词“ Omega-3脂肪酸”,“ DHA”,“ EPA”,“ PUFA”。摘要。该评论设法介绍了omega-3脂肪酸对脑发育,衰老和对治疗诸如阿尔茨海默氏病和耐药性癫痫等疾病的有用补充的影响。通过接受多项研究,作者就补充PUFA的方法面对了各种专家的观点。此外,结论是适当剂量的海洋鱼油不会引起任何严重的副作用。考虑到它们对神经系统的广泛积极影响,每个人都应消耗它们。
摘要 海洋生态系统富含“omega-3”长链(C 20-24)多不饱和脂肪酸 (LC-PUFA)。人们历来认为,这些脂肪酸的产生主要来自海洋微生物。最近,这一长期存在的教条受到了挑战,因为人们发现,许多无脊椎动物(大多生活在水中)都具有从头合成多不饱和脂肪酸 (PUFA) 和从中合成 LC-PUFA 所必需的酶机制。关键突破是在这些动物中检测到了称为“甲基末端去饱和酶”的酶,这种酶能够实现 PUFA 的从头合成。此外,在几种非脊椎动物门中,还发现了在 LC-PUFA 生物合成中起关键作用的其他酶,包括前端去饱和酶和极长链脂肪酸蛋白的延长。本综述全面概述了这些基因/蛋白质家族在水生动物(尤其是无脊椎动物和鱼类)中的补充和功能。因此,我们扩展并重新定义了我们之前对脊索动物中存在的 LC-PUFA 生物合成酶的修订,并将其应用于整个动物,讨论了关键的基因组事件如何决定不同分类群中去饱和酶和延长酶基因的多样性和分布。我们得出结论,无脊椎动物和鱼类都表现出活跃但明显不同的 LC-PUFA 生物合成基因网络,这是由复杂的进化路径与功能多样化和可塑性相结合的结果。关键词水生生态系统、生物合成、极长链脂肪酸蛋白的延长、前端去饱和酶、长链多不饱和脂肪酸、甲基端去饱和酶、ω-3
摘要 产油真菌的微生物脂质生产为生产多不饱和脂肪酸 (PUFA) 提供了潜在的来源,PUFA 是一种有价值的营养和药物应用化合物。培养条件的优化对于提高微生物脂质产量至关重要。本研究旨在利用当地产油霉菌 Cunninghamella sp 来改善脂质合成。常规研究了碳源、氮源、pH 值和培养时间等几个因素对 Cunninghamella sp 脂质积累的影响(每次一个变量)。结果表明,最有效的碳源是葡萄糖,硝酸钠是脂质合成的最佳氮源。最佳 pH 值和培养时间分别为 6.0 和 5 天。此外,使用响应面法 (RSM) 进一步优化葡萄糖浓度、硝酸钠和 pH 值以最大限度提高脂质产量。应用中心复合设计 (CCD),并使用具有二次项的多项式回归模型通过方差分析 (ANOVA) 估计实验数据。 RSM-CCD 优化结果表明,葡萄糖和硝酸钠的最佳浓度分别为 38.28 g/L 葡萄糖、0.48 g/L,pH 值为 5.79,脂质积累率为 25.4% (w/w)。二次模型表明,pH 是小克汉霉属 (Cunninghamella sp.) 脂质合成中影响最大的因素,小克汉霉属是一种具有高效脂质积累潜力的当地分离物。关键词:小克汉霉属;多不饱和脂肪酸;微生物脂质;优化;响应面法。
种子油可用作食用油,也越来越多地用于工业用途。尽管高油酸种子油更适合工业用途,但大多数种子油富含多不饱和脂肪酸 (PUFA),而油酸等单不饱和脂肪酸 (MUFA) 含量较低。亚麻荠油是一种新兴的油籽作物,种子含油量高,且能抵抗环境压力,其含有 60% 的 PUFA 和 30% 的 MUFA。六倍体亚麻荠携带三种 FAD2 同源物,编码脂肪酸去饱和酶 2 (FAD2),负责从油酸合成亚油酸。在本研究中,为了增加亚麻荠籽油中的 MUFA 含量,我们通过 CRISPR-Cas9 介导的基因编辑生成了 CsFAD2 敲除植物,使用包含 DsRed 作为选择标记的 pRedU6fad2EcCas9 载体、用于驱动覆盖三个 CsFAD2 同源物共同区域的单个向导 RNA (sgRNA) 的 U6 启动子以及用于驱动 Cas9 表达的卵细胞特异性启动子。我们使用来自转化亚麻荠叶片的基因组 DNA 通过 PCR 分析了 CsFAD2 同源物特异性序列。三对 FAD2 同源物的敲除导致矮小的丛生表型,但大大提高了种子中的 MUFA 水平(提高了 80%)。然而,具有两对 CsFAD2 同源物的转化子被敲除,但另一对野生型杂合子显示正常生长,种子 MUFA 产量增加了 60%。这些结果为通过基因组编辑影响多倍体作物生长的基因代谢工程提供了基础。