摘要:食源性疾病主要是由于用致病性微生物污染肉类或肉类产品。在这项研究中,我们首先研究了Tris缓冲血浆激活水(TB-PAW)在弯曲杆菌(C.)Jejuni和Escherichia(E。)(E.)大肠杆菌上的体外应用,并减少了约。4.20±0.68和5.12±0.46 log 10 cfu/ml。此外,将鸡肉和鸭子大腿(用Jejuni或大肠杆菌接种)和乳房(带有天然的微叶),用TB-PAW喷洒皮肤。样品在修改的气氛下填充,并在4℃下储存0、7和14天。TB-PAW可以在第7和第14天(鸡)和大肠杆菌在第14天(鸭)中大大减少C. jejuni。在鸡肉中,感觉,pH值,颜色和抗氧化活性没有显着差异,但是%oxymb水平降低,而%metmb和%deomb却增加了。在鸭中,我们观察到TB-PAW的pH值,颜色和肌红蛋白氧化还原形式的略有差异,而感官测试人员并未感知这些形式。仅在产品质量方面略有差异,其用作喷雾处理可能是减少鸡肉和鸭子尸体上的Jejuni和大肠杆菌的有用方法。
摘要:牙源性感染是颌面区域的最常见感染性和炎症性疾病,而病原体鉴定的问题是实际任务,这是对治疗以及诊断方案和标准的永久性过程的一部分。在介绍的研究中,通过细菌学方法研究了13例急性化脓性牙源性牙源性病变患者的化脓性渗出液,并检测到对抗菌剂的敏感性。细菌学研究表明,链球菌属占69.23%的病例。在临床上显着浓度(每1 mL及以上10 5)(链球菌和葡萄球菌)中的致病性微生物具有对四环素和多西环素的抗性,对22.22%的Macrolides具有中等敏感性,在77.78%中具有中等的敏感性。阿莫西林/克拉维酸盐在22.22%的病例和中等延迟中引起有效的生长迟缓 - 在没有抵抗病例的情况下为77.78%。在50.00%的病例中检测到对头孢菌素的敏感性,中等灵敏度 - 38.89%,耐药性 - 11.11%。氟喹诺酮是最有效的 - 在72.22%的情况下,敏感性,中等灵敏度 - 22.22%,耐药性 - 5.56%。最有效的氟喹诺酮是莫西沙星和环丙沙星。
简化剪接机制的示意图。(a)由三个外显子(E1,E2和E3)组成的前MRNA的通用图以及具有外显子和内含剪接调节元件(ESE,ESS,ISE,ISE和ISS)的两个内含子(外显子之间)。剪接因子(SF)识别调节元件,然后将内含子插入,并产生连续的编码mRNA序列。(b)包含外显子11和12(E11和E12)和内含子11的Col6a1前MRNA段。内含子11的侧面是5'剪接供体(SD)和3'剪接受体(SA)位点。在正常条件下,在没有改变剪接的变体的情况下,内含子11被剪接,并且E11和E12在结果的转录本中连接在一起。(c)用C.930+189c> t变体(RNA中的C> u)从COL6A1基因转录的Pre-MRNA。该变体创建了一个新颖的5'SD位点,并激活了一个先前休眠的3'SA位点,位于新型SD位点上游的72个核苷酸(NT)。如果这两个新站点被剪接体识别,则在成熟的mRNA中将72 nt长的伪外exon(PE)插入E11和E12之间。只有确认新颖的5'SD位点时,将其上游的72 nt长PE和115 nt长的区域都插入成熟的mRNA中。但是,后一个成绩单不超过框架,而不会被翻译而降级。当两个新地点都没有识别出来时,会产生野生型成熟的转录本。(d)剪接切换ASOS在空间上阻止剪接体识别新颖的5'SD位点,并从成熟的转录本中从整个内含子11中获得正确的剪接
欧洲肿瘤学研究院,欧洲肿瘤学研究所,意大利米兰B肿瘤学和血液科学系,米兰大学,米兰大学,意大利米兰,意大利病理学部门,IRCCSCàGrandaFoundation,Maggiore Policore Policlinico Policlinico医院人类大学生物医学科学系,Pieve Emanuele,米兰,米兰,意大利自适应免疫实验室,IRCCS Humanitas Research Hospital,Milan,Italy G Gastroenterology and Gastroenterology和IRCCS基金会CàGranda,Maggiore Policlinico,Maggi Maggi oggi of Caigi of Caigi of Camgi'ircy,IRCC,IRCCS MAGGIORE POLICLINICO Milan, Italy I Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy J Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy K, Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy Corpsontding Author: Dr Federica Fadotti, Department of Experimental Oncology, European Institute of Oncology IRCCS, via Adamello 16,20135,意大利米兰。†这些作者为这项工作做出了贡献。#Current地址:荷兰荷兰癌症研究所,荷兰荷兰癌症生物学和免疫学系。
1 斯坦福大学医学系,美国加利福尼亚州斯坦福市;2 斯坦福大学流行病学与人口健康系,美国加利福尼亚州斯坦福市;3 密歇根大学公共卫生学院和内科学系卫生管理与政策系,美国密歇根州安娜堡市;4 南加州大学凯克医学院人口与公共卫生科学系,美国加利福尼亚州洛杉矶市;5 加州大学旧金山分校流行病学与生物统计学系和海伦·迪勒家庭综合癌症中心,美国加利福尼亚州旧金山市;6 密歇根大学内科学系和退伍军人事务安娜堡医疗保健系统临床管理研究中心,美国密歇根州安娜堡市;7 埃默里大学罗林斯公共卫生学院流行病学系,美国佐治亚州亚特兰大市
1 西班牙 Esplugues de Llobregat 08950,Santa Rosa 39-57,Institut de Recerca Sant Joan de Déu,神经肌肉疾病应用研究实验室,神经肌肉病理学科,神经儿科服务部; mariacarmen.badosa@sjd.es (CB); alejandro.hernandez@uib.es(AH-D.); daniel.natera@sjd.es(DN-dB); carlos.ortez@sjd.es (科罗拉多州); andres.nascimento@sjd.es(AN); cecilia.jimenez@sjd.es (CJ-M.) 2 罕见疾病网络生物医学研究中心 (CIBERER), Av.西班牙马德里 28029 蒙福特德莱莫斯 3-5; matmorinro@yahoo.es (MM); dgrinberg@ub.edu (总干事); sbalcells@ub.edu (SB); mopelayo@hotmail.com (M. Á .M.-P.) 3 Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, 西班牙; monica.roldan@sjd.es 4 遗传服务,Ram ón ny Cajal 大学医院,Ram ón ny Cajal 卫生研究所,Ctra。 Hive Old Km。 9,100, 28034 马德里,西班牙; sergio.fernandez@hrc.es 5 巴塞罗那大学生物医学研究所(IBUB)生物学院遗传学、微生物学和统计学系,巴塞罗那大学,Av. Diagonal 643, 08028 巴塞罗那,西班牙 6 共聚焦显微镜和细胞成像部门,遗传和分子医学服务中心,罕见病儿科研究所 (IPER),Sant Joan de Déu 医院,Passeig Sant Joan de Deu, 2, 0895 通讯:通讯:lopez@sjd.es
1 Fiocruz,健康发展中心(C.D.T.S.),国家科学技术研究所,用于被忽视的人口疾病(INCT-IDPN),里约热内卢21040-900,巴西RJ; guilherme.lechuga@cdts。fifocruz.br(G.C.L.); joaoprsc@id.uff.br(J.P.R.S.C.)2个微生物科,美国国家质量控制研究所(I.N.C.Q.S.),Fiocruz,Rio de Janeiro 21040-900,RJ,巴西; fellipe.cabral@incqs。finfocruz.br(f.o.c.);玛丽亚3联邦弗林宁斯大学生物学研究所分子和细胞生物学系,NITEROI 22040-036,RJ,RJ,巴西4蜂窝和超微结构实验室,Oswaldo Cruz Institute,Fiocruz,Rio de Janeiro 21040-900,RJ,RJ,Brazil; victor.midlej@ioc.fiocruz.br 5 Epidemiology and Molecular Systematic Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil * Correspondence: karynercarvalho@cdts.fiocruz.br (K.R.); dsimone@cdts。fifocruz.br(s.g.d.-s.);电话。: +55-2138658240(K.R.); +55-2138658183(S.G.D.-S。)
致病细菌是特别适应的,并具有克服人体自然防御能力的机制,使它们能够侵入身体的部分(通常没有发现细菌),例如血液。有些病原体仅感染表面上的上皮,皮肤或粘膜,但许多病原体会更深入地传播,通过组织传播并通过淋巴和血液传播。致病性微生物可以在罕见情况下感染一个完全健康的人,但是通常会在人体的防御机制因局部创伤或潜在的使人衰弱的疾病损害时发生感染,例如伤口,醉酒,冷酷,寒冷,疲劳和营养不良。在许多情况下,重要的是要区分感染和殖民化,这是细菌几乎没有或没有伤害的时候。
摘要:PI3K/AKT 通路是多种人类癌症中最常过度激活的细胞内通路之一。该通路作用于不同的下游靶蛋白,促进肿瘤细胞的致癌、增殖、侵袭和转移。在多种癌症类型中都发现了多层次的损伤,包括突变和基因改变、miRNA 序列的异常调控以及级联因子的异常磷酸化。该通路的失调会抵消常见的治疗策略并导致多药耐药性。在这篇综述中,我们强调了该通路在病理生理细胞存活机制中的作用,强调了它在耐药性发展中的关键作用。我们还概述了目前可用的潜在抑制策略。
1病毒学研究所,弗雷伊大学柏林,德国柏林14163; ahmed.kheimar@fu-berlin.de(a.k.); luca.bertzbach@fu-berlin.de(L.D.B.); yuyou@zedat.fu-berlin.de(y.y。); andele.conradie@fu-berlin.de(A.M.C。)2家禽疾病系,SOHAG大学兽医学院,82424 SOHAG,埃及3埃及3繁殖生物技术,分子生命科学系,TUM TUM慕尼黑技术大学,慕尼黑技术大学,85354,德国85354 Freising,德国; romina.klinger@tum.de(R.K.); hicham.sid@tum.de(H.S.)4巴伐利亚动物卫生服务,病理学系,德国85586; benjamin.schade@tgd-bayern.de(B.S.); brigitte.boehm@tgd-bayern.de(b.b。)5 EW Group GmbH,德国Visbek 49429; rudolf.preisinger@ew-group.de 6英国Woking GU24 0NF的Pirbright Institute; venugopal.nair@pirbright.ac.uk *通信:benedikt.kaufer@fu-berlin.de(B.B.K.); benjamin.schusser@tum.de(B.S.)†a.k.和R.K.为这项工作做出了同样的贡献。