摘要:抗生素主要是人类健康的重要分子。抗生素发现黄金时代后,随后发生了下降时期,其特征是同一分子的重新发现。同时,新的培养技术和高通量测序使发现新的微生物,这些生物代表了有趣的新型新抗菌物质的潜在来源。这篇综述的目的是呈现最近发现的非核糖体肽(NRP)和聚酮化合物(PK)分子,具有抗微生物活性针对人类病原体。我们强调了导致其发现的硅/体外策略和方法的不同。由于技术进步以及对NRP和PK合成机制的更好理解,这些新的抗生素化合物为人类医疗方面提供了一种额外的选择,并且可以摆脱抗生素耐药性的潜在方法。
Lorena Simón-Gracia、Severine Loisel、Valeria Sidorenko、Pablo Scodeller、Christophe Parizot 等人。针对慢性淋巴细胞白血病的肿瘤穿透和干扰肽的临床前验证。分子药剂学,2022 年,19 (3),第 895-903 页。�10.1021/acs.molpharmaceut.1c00837�。�hal-03800857�
射血分数保留的心力衰竭 (HFpEF) 是充血性心力衰竭的一种亚型,其特点是射血分数正常。与其发展相关的合并症通常包括糖尿病、高血压和肥胖等限制心脏充盈压的慢性疾病。由于射血分数降低的心力衰竭 (HFrEF) 一直是大量研究的主题,医生在治疗 HFpEF 患者时一直面临着缺乏有效治疗干预措施的问题。近年来,越来越多的研究旨在确定 HFpEF 的有效治疗药物。钠-葡萄糖协同转运蛋白-2 (SGLT-2) 抑制剂和胰高血糖素样肽-1 (GLP-1) 受体激动剂最初是为治疗糖尿病而开发的,即使在没有糖尿病的情况下,也显示出对 HFpEF 的临床结果有所改善。本系统综述旨在收集和分析对这两类药物的随机对照试验和观察性研究的证据。在进行这项全面的系统评价时,我们遵循了系统评价和荟萃分析的首选报告项目 (PRISMA) 2020 指南。为了查找所有相关研究,我们搜索了三个主要医学数据库,包括 Web of Science、Cochrane 临床对照试验中心注册库 (CENTRAL) 和 PubMed (NCBI)。我们已确定了 13 项关于这两类药物的研究,其中一些研究有助于制定当前的 HFpEF 管理指南。我们使用质量评估工具(包括 Cochrane 偏倚风险 2 工具和纽卡斯尔-渥太华量表工具)审查了纳入研究的质量,以确保透明度并限制偏见,从而获得更可靠的发现。大多数关于 SGLT-2 抑制剂的研究表明,住院率和症状负担(以堪萨斯城心肌病问卷 (KCCQ) 评分衡量)和功能能力(以 6 分钟步行测试距离衡量)显着降低。 GLP-1 受体激动剂也改善了症状评分和功能能力,特别是在肥胖患者中,尽管住院率的降低仍不清楚。两类药物的功能能力和症状评分均有所改善,尽管一些指标在各项研究中并不一致具有统计学显著性。由于缺乏对两种药物进行比较的试验,因此一种药物优于另一种药物仍无定论。此外,GLP-1 受体激动剂的研究较晚,因此有必要对这类药物进行进一步研究,以评估长期结果、对非肥胖患者的疗效以及与 SGLT-2 抑制剂的联合使用。
RA、Einhorn D、Galindo RJ、Gardner TW、Garg R、Garvey WT、Hirsch IB、Hurley DL、Izuora K、Kosiborod M、Olson D、Patel SB、Pop-Busui R、Sadhu AR、Samson SL、Stec C、Tamborlane WV Jr、Tuttle KR、Twining C、Vella A、Vellanki P、Weber SL。美国临床内分泌学会临床实践指南:制定糖尿病综合护理计划 - 2022 年更新。Endocr Pract。2022 年 10 月;28(10):923-1049。doi:10.1016/j.eprac.2022.08.002。
肿瘤微环境 (TME) 中的整合素 v 6 和 v 8 已被证实能激活免疫抑制 TGF- ,这是一系列肿瘤对免疫检查点抑制剂产生耐药性的重要机制。在本研究中,我们展示了套索肽作为设计新疗法的多功能支架的效用。通过结合表位扫描、计算设计和定向进化,设计了一系列高效且选择性的双重 v 6/8 抑制剂。几种类似物,如套索肽 36 和 47 ,已被充分表征,并报告了物理化学、体外药理学和体内数据。套索肽 47 是 36 的一种半衰期延长衍生物,与检查点抑制剂联合使用时,已被证实可强烈增强小鼠抗 mPD-1 耐药肿瘤的敏感性。研究表明,47/抗 mPD-1 组合可在三阴性乳腺癌和卵巢癌小鼠模型中阻止肿瘤生长并使肿瘤消退。因此,TME 中表达的 v 6/8 整合素的双重抑制代表了一种有前途的肿瘤特异性策略,可克服 TGF- 驱动的耐药性并增强免疫检查点抑制剂的抗肿瘤功效。_________________________________________________
异常的Wnt途径激活,导致β-catenin核积累和失调的转录活性,是大肠癌(CRC)的关键事件。在癌细胞中,β-catenin与其共激活剂BCl9的相互作用导致支持肿瘤细胞存活和增殖的遗传学信号过度激活(图1,顶部)。此外,Wnt/β-catenin途径突变与不同肿瘤类型1的免疫排除相关。从Wnt/β-catenin驱动的肿瘤释放的可溶性因子激活肿瘤相关巨噬细胞(TAM)的成熟,向免疫抑制M2类似M2的表型1,2,并驱动免疫抑制的髓样髓样抑制细胞(MDSC)群体的促进促进型髓样型抑制细胞(MDSC)群体,贡献了tumor tumor的生长3。
T细胞受体(TCR)及其同源表位之间结合的准确预测是理解适应性免疫反应和发展免疫疗法的关键。当前方法面临两个显着的局限性:全面的高质量数据的短缺以及通过选择监督学习方法中常用的负面培训数据引起的偏见。我们提出了一种基于变压器的方法,用于相互作用的肽和T细胞受体(Tulip)的方法,该模型通过利用不完整的数据和无监督的学习以及使用语言模型的变压器体系结构来解决这两个限制。我们的模型具有灵活性,并整合了所有可能的数据源,无论其质量或完整性如何。我们证明了先前有监督方法中使用的抽样程序引入的偏差的存在,强调了不受监督的方法的需求。郁金香识别表位的特定TCR结合,在看不见的表位上表现良好。我们的模型优于最先进的模型,并为开发更准确的TCR表位识别模型提供了有希望的方向。
1 中国北京北京大学2号计算机科学技术系2北京北京北京大学AI行业研究所3中国北京7福吉安省脑衰老和神经退行性疾病的关键主要实验室,基础医学科学学院,福建医科大学,福建,富士,富士,纳米材料和纳米安全的纳米材料和纳米安全性生物医学效应的主要实验室中国北京大学 *应致辞:wangzh@iccas.ac.cn,liuyang2011@tsinghua.edu.cn,majianzhu@tsinghua.edu.edu.cn中国北京北京大学2号计算机科学技术系2北京北京北京大学AI行业研究所3中国北京7福吉安省脑衰老和神经退行性疾病的关键主要实验室,基础医学科学学院,福建医科大学,福建,富士,富士,纳米材料和纳米安全的纳米材料和纳米安全性生物医学效应的主要实验室中国北京大学 *应致辞:wangzh@iccas.ac.cn,liuyang2011@tsinghua.edu.cn,majianzhu@tsinghua.edu.edu.cn中国北京北京大学2号计算机科学技术系2北京北京北京大学AI行业研究所3中国北京7福吉安省脑衰老和神经退行性疾病的关键主要实验室,基础医学科学学院,福建医科大学,福建,富士,富士,纳米材料和纳米安全的纳米材料和纳米安全性生物医学效应的主要实验室中国北京大学 *应致辞:wangzh@iccas.ac.cn,liuyang2011@tsinghua.edu.cn,majianzhu@tsinghua.edu.edu.cn中国北京北京大学2号计算机科学技术系2北京北京北京大学AI行业研究所3中国北京7福吉安省脑衰老和神经退行性疾病的关键主要实验室,基础医学科学学院,福建医科大学,福建,富士,富士,纳米材料和纳米安全的纳米材料和纳米安全性生物医学效应的主要实验室中国北京大学 *应致辞:wangzh@iccas.ac.cn,liuyang2011@tsinghua.edu.cn,majianzhu@tsinghua.edu.edu.cn中国北京北京大学2号计算机科学技术系2北京北京北京大学AI行业研究所3中国北京7福吉安省脑衰老和神经退行性疾病的关键主要实验室,基础医学科学学院,福建医科大学,福建,富士,富士,纳米材料和纳米安全的纳米材料和纳米安全性生物医学效应的主要实验室中国北京大学 *应致辞:wangzh@iccas.ac.cn,liuyang2011@tsinghua.edu.cn,majianzhu@tsinghua.edu.edu.cn
简介抗生素耐药性是现代社会面临的一项重大全球健康挑战 [1,2],其主要原因是多重耐药 (MDR) 细菌(通常称为“超级细菌”)的出现、传播和持续存在。这些超级细菌是导致对常规治疗干预具有耐药性的感染的罪魁祸首。人类和动物健康中广泛且不加区分地使用抗生素,再加上抗生素研究缺乏创新(新型抗生素的引入减少就是明证),这是导致抗生素耐药性发展和传播的重要因素 [3]。我们必须加快努力,不仅要制定政策遏制抗生素的不当和不合理使用,还要着力开发能够有效对抗细菌感染的新型化学实体 [4]。肽脱甲酰酶 (PDf) 是一种金属酶,它通过将蛋氨酸上的末端 N 残基转化为甲酰基部分来调节蛋白质成熟 [5,6],作为开发新型抗菌剂的靶标具有巨大的潜力(图 1)。最初人们认为 PDf 只存在于细菌中,而且缺乏针对性药物,因此它被视为开发新型抗菌剂的希望之光 [7-9]。尽管在真核生物中已经鉴定和表征了功能性 PDf 同源物,包括人类的线粒体异构体 [10-14],这对将该酶明确指定为相关的抗生素靶点提出了挑战,但酶学和结构研究表明,原核细胞和细胞器细胞之间 PDf 配体结合位点存在显著差异 [15-17],证实了该酶作为引人注目的相关治疗靶点的地位。