1 电容单位:1 pF = 10 −12 F;1 fF = 10 −15 F;1 aF = 10 −18 F。满量程 (FS) = 8.192 pF;满量程范围 (FSR) = ±8.192 pF。2 规格未经生产测试,但由产品初始发布时的特性数据支持。3 工厂校准。绝对误差包括工厂增益校准误差、积分非线性误差和系统失调校准后的失调误差,均在 25°C 下。在不同温度下,需要对增益随温度漂移进行补偿。4 可以使用系统失调校准消除电容输入失调。系统失调校准的精度受失调校准寄存器 LSB 大小 (32 aF) 或系统电容失调校准期间的转换器 + 系统 p-p 噪声限制,以较大者为准。为了最大限度地减少转换器 + 系统噪声的影响,应使用较长的转换时间进行系统电容失调校准。系统电容失调校准范围为 ±1 pF;可以使用 CAPDAC 消除较大的失调。5 规格未经生产测试,但由设计保证。6 增益误差在 25°C 时进行工厂校准。在不同温度下,需要对增益随温度漂移进行补偿。7 必须将 VT SETUP 寄存器中的 VTCHOP 位设置为 1,以实现指定的温度传感器和电压输入性能。8 使用外部温度传感二极管 2N3906,非理想因子 n f = 1.008,连接方式如图 37 所示,总串联电阻 <100 Ω。9 满量程误差适用于正满量程和负满量程。
SE-MAO 机组于 11:42 离开根西岛机场飞往伯明翰国际机场。他们抵达伯明翰时,天气预报显示西南风强劲,能见度良好,云层较高。副驾驶是该航段的飞行驾驶员 (PF)。在雷达引导下,机组人员以航向器 (LLZ) DME 进近伯明翰 33 号跑道,然后进行了稳定进近。12:45 时,在着陆拉平期间,飞机向中心线右侧漂移,机头偏离跑道方向约 20°。飞机开始复飞,爬升后,雷达引导飞机进一步进近。在副驾驶的要求下,机长成为第二次进近的 PF,此时跑道 33 的 LLZ DME 再次稳定。距离 2 海里
图 4:(蓝色)脉冲高度分析仪 (PHA) 光谱,来自锆激活 BGO 探测器,位于 PF 轴 0° 处,累积了 7 个系列的拍摄,每个系列 16 次拍摄,每个拍摄的门间隔为 3.0 秒,连续 112 次 PF 拍摄的累计有效时间 = 336 秒。(绿色)实验室背景辐射的 PHA 光谱,有效时间 = 160 分钟 = 9600 秒,但缩小到 336 秒有效时间。在次轴上:(红色)净(背景减去)PHA 光谱,和(黑色)MCNP5 模拟的 BGO 能量光谱,用于 ¦¦¦ 发射的 γ 射线。灰色虚线框表示 SCA 能量窗口。 SCA 能量窗口内每次发射的计数为: 、 、 、 、 、 。 。 。 PHA bin 宽度为 1.93 keV。
本文提出了一种适用于宽频率范围的新型静电可调电容器。针对其应用,提出了完整的设计规则来设计 0.01 pF – 2.05 pF 范围内的可变电容器。根据所需的电容值,设计的电容器占用 0.03 mm 2 – 1.12 mm 2 的空间,与相关已发表的文献相比非常小。使用浮动技术来获得高品质因数。所提出的电容器的品质因数在 1.28G 至 2.78GHz 的频率范围内在 45 到 100 之间,并且可调电容器的可调谐范围为 374%。在提出完整的设计规则和相关方程后,所提出的电容器用于带有螺旋电感器的放大器电路中,并评估了所提出的电容器的性能并将其与其他电容器进行了比较。使用 COMSOL Multiphysics 进行模拟。
特发性肺纤维化(IPF)是一种慢性进行性疾病,是未知来源和最常见的间质性肺部疾病。但是,IPF的治疗选择是有限的,迫切需要新的疗法。组蛋白脱乙酰基酶(HDACS)是参与染色质重塑和基因转录调控的组蛋白乙酰化活性的酶。越来越多的证据表明,HDAC家族与包括IPF在内的慢性杂化疾病的发展和发展有关。本评论旨在总结有关HDAC和相关抑制剂及其在治疗IPF中的潜在应用的可用信息。将来,HDACs可能是新的靶标,可以帮助理解PF的病因,并且选择性抑制单个HDAC或HDAC基因的破坏可能是治疗PF的策略。
办公室负责处理许可请求与上市人员和实体互动的请求,以及从业者确保对与上市人员和实体打交道的义务的正确理解。目标3-识别和正确控制使ML/TF/PF
负责处理与名单上列出的个人和实体打交道的许可申请的办公室,以及确保从业人员正确理解与名单上列出的个人和实体打交道的义务的办公室。目标 3 - 识别和适当控制导致洗钱/恐怖主义融资/公共财政犯罪的活动
1 3.0 V 至 3.6 V 和 4.5 V 至 5.5 V 电源范围的精度规格指定为 3- Σ 性能。 2 建议不要在高于 125°C 的温度下操作器件,且操作时间不得超过器件使用寿命的 5% (5,000 小时)。超过此限值的任何暴露都会影响器件的可靠性。 3 常模电流与 T L 期间的电流有关。TMP05/TMP06 在 T H 期间不转换,因此静态电流与 T H 期间的电流有关。 4 由设计和特性保证,未经生产测试。 5 建议限制从 TMP05 输出拉出的电流,因为任何流过芯片的过大电流都会导致自热。因此,可能会出现错误的温度读数。 6 测试负载电路为 100 pF 至 GND。 7 测试负载电路为 100 pF 至 GND,10 kΩ 至 5.5 V。
扩张对称性:如果G是离散的,则A f = g,并且P是coprime to | | f | ,然后a⊕pf= g。这具有简短的基本数字理论证明(基于Frobenius身份(A + B)P = A P + B P在任何特征P的通勤环中)。
摘要。电子电路板的温度升高会对电子电路产生明显的影响,从而导致电路元件的基本参数发生一些变化。本文旨在研究和分析高温对双极晶体管静态和动态特性的影响。这项研究是通过在不同温度下研究和分析 NPN BJT 晶体管 2SC2120 的几个参数进行的实验。结果表明,随着温度从 25 °C 升高到 130 °C,集电极电流从 0.19 A 显著增加到 0.23 A,电流增益从 0.14 显著增加到 0.22。至于阈值电压,发现其值从 0.6 伏降低到 0.4 伏。结果还表明,对于动态特性,随着温度升高到 130 °C,发射极-基极结的扩散电容从 10.1 nF 增加到 45.02 nF。最后发现,在相同的温度范围内,栅漏结的反向电容从41.4 pF增加到47.3 pF。