crass样噬菌体最初是从涉及元基因组测序的研究和来自多个个体(Crass-cr oss asbly)的读取的研究中得出的高度丰富和肠道微生物组的普遍成员。最近,已经确定了粘膜类细菌的骨状噬菌体感染细菌。最令人兴趣的面孔样噬菌体之一是它们在实验室和肠道中持续数量高的能力,而不会显着影响其细菌宿主的丰富性。在这里,我们重述了迄今为止,从2014年的硅硅发现以及随后鉴定唯一基因组特征的含量噬菌体,到Crass001的第一个隔离以及阐明由Vivo In Vivo的Phage-Host对研究引起的各种生物学特征的首次分离。在相对较短的时间内收集了大量信息,但是很明显,类似骨状的噬菌体研究仍处于起步阶段。未来的研究在于进一步的体内工作,与噬菌体 - 宿主对一起工作,再加上从较大的群体中分离出进一步的crass样噬菌体。引言泥泞的噬菌体是人类肠道微生物组的有趣成员。它们既多产又广泛,占肠道病毒基因组的86%以上。(Yutin等,2021)在来自全球各地的粪便中都发现了它们,并且在从婴儿到老年人的所有年龄段中都发现了它们(Edwards等,2019)。也已显示它们被转移并稳定地植入虽然crassphages很少是新生微生物组的组成部分,但它们在生命的第一年就变得越来越普遍。已经表明,垂直传播会导致这种初始定植(McCann等,2018; Siranosian等,2020)。
au:PleaseconfirmthatalleheadinglevelsarerepressedCorrectedCornecty:在有细菌的地方,会有噬菌体。这些病毒在塑造其嵌入的更广泛的微生物群落方面是重要的参与者,对人类健康产生了潜在的影响。另一方面,细菌具有一系列不同的免疫机制,可保护防止噬菌体,包括突变或完全丢失噬菌体受体,以及CRISPR-CAS适应性免疫。我们以前的工作表明了微生物群落如何影响噬菌体抗性的演变,但对逆向噬菌体的相互作用与这些不同的噬菌体抗性机制之间的相互作用如何影响嵌入它们的更广泛的微生物群落。在这里,我们进行了为期10天的完全阶乘进化实验,以研究噬菌体如何影响人造四种细菌群落的结构和动力学,其中包括铜绿假单胞菌野生型野生型或无法通过CRISPR-CAS进化噬菌体耐药性的异源突变体。此外,我们还使用数学建模来探索完整的社区行为的生态互动,并确定有关噬菌体对社区动态影响的一般原则。我们的结果表明,通过噬菌体的添加,微生物群落的结构发生了巨大改变,鲍曼尼杆菌杆菌成为主要物种和p。铜绿物被驱动几乎灭绝,而p。铜绿物胜过其他特征。此外,我们发现p。铜绿菌株具有进化基于CRISPR的抗性的能力,通常在a存在时会更好。鲍曼 - 尼(Bauman-Nii),但由于噬菌体被灭绝,因此随着时间的流逝,这种好处在很大程度上消失了。最后,我们表明,在有没有噬菌体的微生物社区进行建模时,仅成对数据是不够的,强调了高阶相互作用在管理复杂社区中的摩尔群体动态中的重要性。结合在一起,我们的数据清楚地说明了靶向主要物种的噬菌体如何允许释放最强的竞争者,同时也有助于维持社区多样性
抗生素衰竭是对全球健康的最令人担忧的威胁之一。正在探索的新的治疗努力中,使用噬菌体(杀死细菌的病毒),也称为“噬菌体”,正在广泛研究,作为靶向细菌病原体的一种策略。但是,噬菌体疗法的主要缺点之一是细菌用来防御噬菌体的多种防御机制。本综述旨在总结正在评估以克服细菌防御系统的治疗方法,包括应用最具创新性的治疗方法:围绕噬菌体受体突变;修改预言;靶向CRISPR-CAS系统和生物膜矩阵;更安全,更有效的噬菌体的工程;并抑制细菌使用的抗死者策略。
从受感染的大肠杆菌菌株W3350中分离出双链DNA(CL857 IND1 SAM7)分离出双链DNA。分子量为31.5 x 10e6 daltons,长度为48,502个碱基对。通过凝胶过滤从热诱导的溶菌原大肠杆菌CL857 S7中分离出噬菌体。通过苯酚/氯仿提取从纯化的噬菌体中分离出DNA,并透析透析于10mm Tris-HCl(pH7.4)和1mm EDTA。
图 1. 有效去除宿主基因组 DNA,同时不降低噬菌体 DNA 产量。使用 Norgen 的噬菌体 DNA 分离试剂盒从四种富集噬菌体培养物中分离总 DNA。在添加提供的裂解缓冲液之前进行 DNase I 预处理。简而言之,将 20 单位 DNase I 添加到 1 mL 富集噬菌体培养物中,并将混合物在室温下孵育 20 分钟。DNAase I 处理后,按照程序进行。作为对照,使用 Norgen 的噬菌体 DNA 分离试剂盒从相同 4 种培养物的等分试样中分离 DNA,而无需进行 DNase I 处理。对于 DNA 分析,将每 50 µL 洗脱液中的 10 µL 上样到 1X TAE 琼脂糖凝胶上。可以看出,噬菌体 DNA 被其外壳蛋白安全地保护起来,免受 DNase I 处理的影响,而宿主基因组 DNA 则被 DNase I 有效降解。因此,DNase I 预处理导致最终噬菌体洗脱中宿主 gDNA 污染较少,而不会影响总噬菌体 DNA 产量。M 号泳道为 Norgen 的 Highranger 1 kb DNA Ladder(货号 11900)
图1。有效的宿主基因组DNA去除,而无需降低噬菌体DNA产量。 使用Norgen的噬菌体DNA分离试剂盒从四个富集的噬菌体培养物中分离总DNA。 在添加提供的裂解之前,进行了DNase I预处理。 布里液,将20单位的DNase I添加到1 ml富集的噬菌体培养物中,并将混合物在室温下孵育20分钟。 DNAase I处理后,遵循该过程。 作为对照,使用Norgen的噬菌体DNA分离试剂盒从相同4个培养物的等分试样中分离DNA,而无需进行DNase I处理。 进行DNA分析,将10 µL的每50 µL洗脱加载到1x TAE琼脂糖凝胶上。 可以看出,噬菌体DNA被其外套蛋白安全地保护了DNase I治疗,而宿主基因组DNA则被DNase I有效降解。 因此,DNase I预处理导致最终噬菌体洗脱中的宿主GDNA污染较少,而不会影响总噬菌体DNA产量。 车道M是Norgen的Highranger 1 Kb DNA梯子(Cat。 11900)。有效的宿主基因组DNA去除,而无需降低噬菌体DNA产量。使用Norgen的噬菌体DNA分离试剂盒从四个富集的噬菌体培养物中分离总DNA。在添加提供的裂解之前,进行了DNase I预处理。布里液,将20单位的DNase I添加到1 ml富集的噬菌体培养物中,并将混合物在室温下孵育20分钟。DNAase I处理后,遵循该过程。作为对照,使用Norgen的噬菌体DNA分离试剂盒从相同4个培养物的等分试样中分离DNA,而无需进行DNase I处理。进行DNA分析,将10 µL的每50 µL洗脱加载到1x TAE琼脂糖凝胶上。可以看出,噬菌体DNA被其外套蛋白安全地保护了DNase I治疗,而宿主基因组DNA则被DNase I有效降解。因此,DNase I预处理导致最终噬菌体洗脱中的宿主GDNA污染较少,而不会影响总噬菌体DNA产量。车道M是Norgen的Highranger 1 Kb DNA梯子(Cat。11900)。
图 1. 有效去除宿主基因组 DNA,且不降低噬菌体 DNA 产量。使用 Norgen 的噬菌体 DNA 分离试剂盒从四种富集噬菌体培养物中分离总 DNA。在添加提供的裂解缓冲液之前进行 DNase I 预处理。简而言之,将 20 单位 DNase I 添加到 1 mL 富集噬菌体培养物中,并将混合物在室温下孵育 20 分钟。DNAase I 处理后,遵循该程序。作为对照,使用 Norgen 的噬菌体 DNA 分离试剂盒从相同 4 种培养物的等分试样中分离 DNA,而不进行 DNase I 处理。对于 DNA 分析,将每 50 µL 洗脱液中的 10 µL 上样到 1X TAE 琼脂糖凝胶上。可以看出,噬菌体 DNA 被其外壳蛋白安全地保护起来,免受 DNase I 处理的影响,而宿主基因组 DNA 则被 DNase I 有效降解。因此,DNase I 预处理导致最终噬菌体洗脱中宿主 gDNA 污染较少,而不会影响总噬菌体 DNA 产量。M 号泳道为 Norgen 的 Highranger 1 kb DNA Ladder(货号 11900)。
图 1. 有效去除宿主基因组 DNA,同时不降低噬菌体 DNA 产量。使用 Norgen 的噬菌体 DNA 分离试剂盒从四种富集噬菌体培养物中分离总 DNA。在添加提供的裂解缓冲液之前进行 DNase I 预处理。简而言之,将 20 单位 DNase I 添加到 1 mL 富集噬菌体培养物中,并将混合物在室温下孵育 20 分钟。DNAase I 处理后,按照程序进行。作为对照,使用 Norgen 的噬菌体 DNA 分离试剂盒从相同 4 种培养物的等分试样中分离 DNA,而无需进行 DNase I 处理。对于 DNA 分析,将每 50 µL 洗脱液中的 10 µL 上样到 1X TAE 琼脂糖凝胶上。可以看出,噬菌体 DNA 被其外壳蛋白安全地保护起来,免受 DNase I 处理的影响,而宿主基因组 DNA 则被 DNase I 有效降解。因此,DNase I 预处理导致最终噬菌体洗脱中宿主 gDNA 污染较少,而不会影响总噬菌体 DNA 产量。M 号泳道为 Norgen 的 Highranger 1 kb DNA Ladder(货号 11900)
图1。有效的宿主基因组DNA去除,而无需降低噬菌体DNA产量。 使用Norgen的噬菌体DNA分离试剂盒从四个富集的噬菌体培养物中分离总DNA。 在添加提供的裂解之前,进行了DNase I预处理。 布里液,将20单位的DNase I添加到1 ml富集的噬菌体培养物中,并将混合物在室温下孵育20分钟。 DNAase I处理后,遵循该过程。 作为对照,使用Norgen的噬菌体DNA分离试剂盒从相同4个培养物的等分试样中分离DNA,而无需进行DNase I处理。 进行DNA分析,将10 µL的每50 µL洗脱加载到1x TAE琼脂糖凝胶上。 可以看出,噬菌体DNA被其外套蛋白安全地保护了DNase I治疗,而宿主基因组DNA则被DNase I有效降解。 因此,DNase I预处理导致最终噬菌体洗脱中的宿主GDNA污染较少,而不会影响总噬菌体DNA产量。 车道M是Norgen的Highranger 1 Kb DNA梯子(Cat。 11900)。有效的宿主基因组DNA去除,而无需降低噬菌体DNA产量。使用Norgen的噬菌体DNA分离试剂盒从四个富集的噬菌体培养物中分离总DNA。在添加提供的裂解之前,进行了DNase I预处理。布里液,将20单位的DNase I添加到1 ml富集的噬菌体培养物中,并将混合物在室温下孵育20分钟。DNAase I处理后,遵循该过程。作为对照,使用Norgen的噬菌体DNA分离试剂盒从相同4个培养物的等分试样中分离DNA,而无需进行DNase I处理。进行DNA分析,将10 µL的每50 µL洗脱加载到1x TAE琼脂糖凝胶上。可以看出,噬菌体DNA被其外套蛋白安全地保护了DNase I治疗,而宿主基因组DNA则被DNase I有效降解。因此,DNase I预处理导致最终噬菌体洗脱中的宿主GDNA污染较少,而不会影响总噬菌体DNA产量。车道M是Norgen的Highranger 1 Kb DNA梯子(Cat。11900)。
构建编码肠杆菌噬菌体T3(噬菌体T3)SSB蛋白蛋白(1-232AA)的质粒是表达重组型噬菌体T3(噬菌体T3)SSB蛋白蛋白的一般方法的第一步。然后将质粒转化为大肠杆菌细胞。阳性大肠杆菌细胞并培养,诱导蛋白质表达,并裂解细胞。蛋白质与N末端6XHIS-SUMO标签融合。然后通过亲和力纯化纯化所得的重组肠杆菌噬菌体T3(T3)SSB蛋白蛋白,并进行SDS-PAGE分析以验证并评估蛋白质的纯度。其纯度超过90%。