摘要。此迷你审查研究了超材料的最突出的特征和用法,例如用于生物医学应用的基于超材料和超材料启发的RF组件。重点是用于传感和成像系统的应用,可穿戴和可植入的天线,用于遥测,并用作可触发吸收剂的超材料,以防止极端电磁(EM)辐射。提出了有关超材料组成,实施和幻影准备的简短讨论和趋势。本综述旨在编译最先进的生物医学系统,这些系统利用超材料概念以某种形式或另一种形式增强其性能。目标是突出超材料的各种应用,并证明不同的超材料技术如何影响从RF到THZ频率范围的EM生物医学应用。的见解和开放问题,从而阐明了原型制作过程。
摘要 有三种方法可以探测到虫洞:负温度、霍金/幻影辐射和 K α 铁发射线。本文讨论了这三种方法是否可用来利用当今的技术探测虫洞,如果可用,哪种方法最好,哪种方法最差。事实证明,所有这些方法都有其缺陷和不切实际之处。在查看了所有证据并将其与我们目前拥有的能力进行比较后,显然存在最佳和最差方法。探测可能的虫洞候选者的最佳方法是使用间接方法探测辐射。间接探测辐射是迄今为止最实用、缺点最少的方法。最差的探测方法是通过探测负温度,因为它有许多不切实际的需要才能工作。
Biopac 摘要 — 用于恢复运动和感觉的双向脑机接口 (BD-BCI) 必须实现同时记录和解码来自大脑的运动命令以及通过体感反馈刺激大脑。之前,我们开发并验证了一种用于运动解码的完全植入式 BCI 系统的台式原型。在这里,原型人工感觉刺激器被集成到台式系统中,以开发完全植入式 BD-BCI 的原型。人工感觉刺激器采用基于脉冲宽度调制的主动电荷平衡机制,以确保对长期接口电极的安全刺激,防止损伤脑组织和电极。在幻影脑组织中测试了 BD-BCI 系统的主动电荷平衡的可行性。通过电荷平衡,可以明显去除电极上的残留电荷。这是迈向完全植入式 BD-BCI 系统的关键里程碑。
弥漫性相关光谱(DCS)是一种越来越流行的非侵入性深层组织血流监测的新兴方式。它对来自单个斑点的快速波动光子计数signals进行了自相关分析。在这封信中,我们表明,可以从CCD摄像机获得的斑点的空间分布进行更简单的分析中获得相同级别的深层组织流量信息,我们将其命名为diffuse speckle对比度分析(DSCA)。均显示了流动幻像实验和体内袖口遮挡数据。DSCA可以被视为一种新的光学方式,结合了DCS和激光斑点对比度(LSCI),它利用了简单的仪器和分析,但对深层组织的流动很敏感。©2013美国光学学会
测量员在获取用于采矿应用的精确空间数据时面临的挑战之一是在崎岖地形和难以进入或无法进入的区域获取数据的风险。随着现代技术的出现,现在可以安全地获取准确的地理空间数据,以便定期进行适当的采矿记录。在矿山测量中使用无人机 (UAV) 进行数据采集是一种快速高效地获取可靠地理空间数据的可行方法。本研究的主要目标是开发一种基于无人机的半自动系统,用于获取估算土方量所需的空间数据。使用 DJI Phantom 4 四轴飞行器采集项目现场的图像数据,并使用 Pix4Dmapper v2.0.1 将图像处理成数字高程模型 (DEM),然后将其导入基于 MATLAB 的土方工程量自动估算系统中。因此,将从自动化系统获得的体积与直接从 Pix4Dmapper 软件获得的体积进行比较,其中指定等高线间隔为 1,允许误差率为 ± 3% 作为标准误差。虽然在使用 Pix4Dmapper 估算的体积中观察到 ± 1.02% 的误差,但开发的自动化系统在其体积估算中产生的估计精度为 ± 0.81%,这证明在准确性和精度方面对于自动体积估算更为可靠。
方法深度剂量(PDD)和传输测量值是在Varian TrueBeam加速器上进行的。通过CT扫描(Toshiba Aquilon)和Alderson-Rando Head Phantom的CT扫描(Toshiba Aquilon)和光学成像(Einscan Pro 2X)获得了用于设备设计的表面轮廓。该设备是在Autodesk Meshmixer软件中建模的3D,并使用Bilby3D TPU和Colorfabb Bronzefill填充剂使用Rish3D Pro2加上FDM打印机生产。使用Varian Eclipse TPS实施了治疗计划,并使用Gafchromic EBT3纤维进行了验证。结果,印刷的TPU在质量和相对电子密度方面表现出与常规推注相似的放射学特性。需要大约10毫米的印刷屏蔽才能将相对剂量减少95%,而9 MeV梁则需要15毫米的9 MeV梁。创建了一个组合的推注/屏蔽装置,初始结果显示幻影可接受。结论TPU和金属纤维均表现出适当的放射学特性,目的是将其作为推注和屏蔽材料在下部电子束能量内用作。使用一种新型生产方法,两种材料都成功地纳入了组合的推注和屏蔽装置中。
本文展示了如何使用增强现实 (AR) 来教授人脑的基本知识并指导正确的 EEG 电极放置。所提出的应用主要包括两个部分:(1) 所提出的基于标记的 AR 系统使用 Vuforia 技术确定头部尺寸以创建虚拟大脑和虚拟 EEG 电极;(2) 用户交互和实施。我们使用幻影头进行了两项实验,以验证标记的大小和工作空间区域,并使用地面真实数据验证虚拟电极的位置。结果表明,所提出的方法可用于在推荐范围内进行电极放置指导。我们的目标是让初学者使用所提出的系统。我们将进一步用人头测试该系统,以评估可用性并确定应用程序改进的关键领域。
[1] F. Mantovani 等人:“面向医疗保健专业人员的虚拟现实培训”,CyberPsychology & Behavior,第 6 卷,第 4 期,第 389–395 页,网址:https://doi.org/10.1089/10949310332 2278772,2003 年。[2] S. Barteit 等人:“用于医学教育的增强、混合和基于虚拟现实的头戴式设备:系统评价”,JMIR Serious Games,第 9 卷,第 3 期,网址:https://doi.org/10.2196/29080,2021 年。[3] S. La Padula 等人:“使用新的增强现实模拟软件对隆胸患者满意度进行评估:一项前瞻性研究”,J Clin Med., 第 11 卷,第 12 期,doi:10.3390/jcm11123464,2022 年。[4] A. Berton 等人:“虚拟现实、增强现实、游戏化和远程康复:对骨科患者康复的心理影响”,临床医学杂志,第 9 卷,第 8 期,第 1-13 页,网址:https://doi.org/10.3390/jcm9082567,2020 年。[5] T. Ong 等人:“在新冠疫情期间及之后使用扩展现实增强远程医疗:观点”,JMIR Serious Games,第 9 卷,第 3 期,网址:https://doi.org/10.2196/26520,2021 年。[6] L. Herrador Colmenero 等人:“镜像疗法、运动意象和虚拟反馈对截肢后幻肢痛的有效性:系统评价”,国际假肢和矫形器,第 42 卷,第 3 期,第 288-298 页。网址:https://doi.org/10.1177/0309364617740230,2018 年。[7] M. Osumi 等人:“虚拟现实康复缓解幻肢痛的特征”,《疼痛医学》(美国),第 20 卷,第 5 期,第 1038-1046 页,网址:https://doi.org/10.1093/pm/pny269,2019 年。[8] A. Rothgangel 和 R. Bekrater-Bodmann:“镜像疗法与增强/虚拟现实应用:面向基于机制的定制幻肢痛治疗”,《疼痛管理》,第 9 卷,第 2 期,第 151-159 页,网址: https://doi.org/10.2217/pmt-2018-0066,2019 年。[9] CC Berger 等人:“触觉的恐怖谷”,Science Robotics,第 3 卷,第 17 期,第 2-4 页,网址:https://doi.org/10.1126/scirobotics.aar7010,2018 年。[10] M. D'Alonzo 等人:“视觉和触觉的不同虚拟化水平产生了化身手部体现的恐怖谷”,Scientific Reports,第 9 卷,第 1 期,第 1-11 页,网址:https://doi.org/10.1038/s41598-019-55478-z,2019 年。[11] M. Fleury,等人:“脑机接口和神经反馈中触觉反馈使用情况调查”,Frontiers in Neuroscience,14(6 月),第 1-16 页。网址:https://doi.org/10.3389/fnins.2020.00528,2020 年。[12] J. Tompson 等人:“使用卷积网络实时连续恢复人手姿势”,ACM Transactions on Graphics (ToG),第 33 卷,第 5 期,第 1-10 页,2014 年。[13] C. Qian 等人:“实时且稳健的深度手部跟踪”,IEEE 计算机视觉与模式识别会议论文集,DOI:10.1109/CVPR.2014.145,2014 年。
Karen E. Willcox(主席)是德克萨斯大学奥斯汀分校奥登计算工程与科学研究所所长、研究副总裁和航空航天工程与工程力学教授。她还是圣达菲研究所的外部教授。在 UT,她担任 W. A.“Tex” Moncrief, Jr.基于模拟的工程与科学主席和 Peter O'Donnell, Jr. 计算系统百年主席。在 2018 年加入奥登研究所之前,她曾在麻省理工学院担任教授 17 年,担任麻省理工学院计算工程中心的创始联席主任和麻省理工学院航空航天系副主任。在加入麻省理工学院教职员工之前,她曾在波音幻影工程公司 (Boeing Phantom Works) 的混合翼身飞机设计小组工作。她是工业与应用数学学会 (SIAM) 会员、美国航空航天学会 (AIAA) 会员,并于 2017 年因对航空航天工程和教育的贡献被任命为新西兰功绩勋章 (MNZM) 成员。2022 年,她当选为美国国家工程院 (NAE) 院士。威尔科克斯 (Willcox) 是下一代工程系统设计、优化和控制计算方法开发和应用的先驱。她的许多活跃研究项目和与工业界的合作正在开发核心数学和计算能力,以实现大规模预测数字孪生。