继欧洲医学物理组织联合会 (EFOMP) 发表有关人工智能与医学物理学专业关系的社论 [1] 之后,为了满足医学物理学家 (MP) 在这个人工智能新领域的教育需求,EFOMP 于 2019 年 6 月宣布成立一个为期 2 年的工作组 (WG),题为“人工智能 (AI)”。预期成果是针对医学物理学家 (MP) 的人工智能课程和专业计划以及 EFOMP 欧洲医学物理专家学校 (ESMPE) 人工智能模块。EFOMP 发现医学物理学家 (MP) 需要通过更新其培训和教育计划来承担起医学人工智能时代利益相关者的角色。欧盟 RP174 中也明确指出了这一点,该指南提出了欧洲医学物理专家指南,并强调了教育和培训作为 MP 专业基础的重要性 [2]。正是在这种背景下,EFOMP 人工智能工作组向 EJMP 主编提议,出版一期聚焦医学物理学中人工智能的焦点期刊 (FI)。其想法是将课程中涉及的最重要的主题汇集到一卷 Physica Medica 中,用于教育和培训欧洲医学物理学家 (MP)。在得到主编的热烈赞同后,他建议将本期焦点期刊的范围扩大到人工智能领域的当前研究方面,我们被邀请担任客座编辑。我们很荣幸并谦虚地接受了这项任务。本期焦点期刊旨在总结人工智能在医学物理学中的技术和应用。它还解决了与这些技术相关的常见陷阱。由于人工智能在医学领域,尤其是医学物理学领域的应用近年来出现了前所未有的增长,医学物理学家职业必须跟上这些变化的步伐,我们希望本期焦点期刊能为参与或将参与这一激动人心的领域的 MP 提供指导。
数据可用性声明:支持本研究结果的数据可根据合理要求从通讯作者处获取。1 H. Amano、Y. Baines、E. Beam 等人,2018 年 GaN 电力电子路线图,Journal of Physics D: Applied Physics。51,(2018)。2 K. Husna Hamza 和 D. Nirmal,GaN HEMT 宽带功率放大器综述,AEU - 国际电子和通信杂志。116,153040 (2020)。3 G. Meneghesso、M. Meneghini、I. Rossetto、D. Bisi、S. Stoffels、M. Van Hove、S. Decoutere 和 E. Zanoni,GaN 基功率 HEMT 的可靠性和寄生问题:综述,半导体科学与技术。31,(2016)。 4 JA del Alamo 和 J. Joh,GaN HEMT 可靠性,微电子可靠性。49,1200-1206 页 (2009)。5 M. Meneghini、A. Tajalli、P. Moens、A. Banerjee、E. Zanoni 和 G. Meneghesso,基于 GaN 的功率 HEMT 中的捕获现象和退化机制,半导体加工材料科学。78,118-126 页 (2018)。6 B. Kim、D. Moon、K. Joo、S. Oh、YK Lee、Y. Park、Y. Nanishi 和 E. Yoon,通过导电原子力显微镜研究 n-GaN 中的漏电流路径,应用物理快报。104,(2014)。 7 M. Knetzger、E. Meissner、J. Derluyn、M. Germain 和 J. Friedrich,《用于电力电子的碳掺杂变化与硅基氮化镓垂直击穿之间的关系》,《微电子可靠性》。66,16-21 (2016)。 8 A. Lesnik、MP Hoffmann、A. Fariza、J. Bläsing、H. Witte、P. Veit、F. Hörich、C. Berger、J. Hennig、A. Dadgar 和 A. Strittmatter,《碳掺杂氮化镓的性质,固体物理状态 (b)》。254,(2017)。 9 B. Heying、EJ Tarsa、CR Elsass、P. Fini、SP DenBaars 和 JS Speck,《位错介导的氮化镓表面形貌》,《应用物理学杂志》。 85,6470-6476 (1999)。
[1] S. Abe。关于非广延物理中广义熵的 q 变形理论方面的注释。Phys. Lett.,A 224:326,1997 年。[2] S. Abe 和 AK Rajagopal。非加性条件熵及其对局部现实主义的意义。Physica,A 289:157,2001 年。[3] L. Accardi。非相对论量子力学作为非交换马尔可夫过程。Adv. Math.,20:329,1976 年。[4] A. Ac´ın、A. Andrianov、L. Costa、E. Jan´e、JI Latorre 和 R. Tarrach。三量子比特态的广义 Schmidt 分解和分类。Phys. Rev. Lett. ,85:1560,2000 年。[5] A. Ac´ın、A. Andrianov、E. Jan´e 和 R. Tarrach。三量子比特纯态正则形式。J. Phys.,A 34:6725,2001 年。[6] M. Adelman、JV Corbett 和 C. A Hurst。状态空间的几何形状。Found. Phys.,23:211,1993 年。[7] G. Agarwal。原子相干态表示态多极子与广义相空间分布之间的关系。Phys. Rev.,A 24:2889,1981 年。[8] SJ Akhtarshenas 和 M. A Jafarizadeh。贝尔可分解态的纠缠稳健性。E. Phys. J. ,D 25:293,2003 年。[9] SJ Akhtarshenas 和 MA Jafarizadeh。某些二分系统的最佳 Lewenstein-Sanpera 分解。J. Phys. ,A 37:2965,2004 年。[10] PM Alberti。关于 C ∗ 代数上的转移概率的注记。Lett. Math. Phys. ,7:25,1983 年。[11] PM Alberti 和 A. Uhlmann。状态空间中的耗散运动。Teubner,莱比锡,1981 年。[12] PM Alberti 和 A. Uhlmann。随机性和偏序:双随机映射和酉混合。Reidel,1982 年。[13] PM Alberti 和 A. Uhlmann。关于 w ∗ -代数上内导出正线性形式之间的 Bures 距离和 ∗ -代数转移概率。应用数学学报,60:1,2000 年。[14] S. Albeverio、K. Chen 和 S.-M. Fei。广义约化标准
1。Donatelli G.,Migaleddu G.,Cencini M.,Cecchi P.,D'Amelio C.,Peretti L.,Buonincontri G.,Tosetti M.,Costagli M.神经影像学杂志doi:10.1111/jon.13201(2024)。*共同的作者和通讯作者2。Donatelli G.,Cecchi P.,Migaleddu G.,Cencini M.,Frumento P.,D'Amelio C.,Peretti L.,Buonincontri G.,Pasquali L.,Tosetti L.,Tosetti M.,Tosotti M.,Cosottini M.,Costagli M.,Costagli M。:病变”,神经图:临床40,103509(2023)。3。Peretti L.,Donatelli G.,Cencini M.,Cecchi P.,Buonincontri G.,Cosottini M.,Tosetti M.,Costagli M。:“使用Pysynthmri生成合成放射学图像:开放式交叉包装工具” 10.3390/断层扫描9050137(2023)。4。Schiavi S., Palombo M., Zacà D., Tazza F., Lapucci C., Castellan L., Costagli M.*, Inglese M.: “Mapping tissue microstructure across the human brain on a clinical scanner with soma and neurite density image metrics”, Human Brain Mapping 44(13):4792-4811 (2023).*通讯作者。5。Ferraro P.M.,Gualco L.,Costagli M. mprage:衍生大脑体积测量值的比较”,Physica Medica - 欧洲医学物理学杂志103,166-174(2022)。*通讯作者。6。Costagli M.,Donatelli G.,Cecchi P.,Bosco P.,Migaleddu G.,Siciliano G.,Siciliano G.,Cosottini M。:“原发性运动皮质中磁敏感性值的分布指数使得可以在疗程疗法的患者中分类为疗程疗法的后期炎症患者”,大脑科学疗法”,Brain Science sciences 12(7),942(7),942(20)。7。Donatelli G.,Costagli M. (2022)。*通讯作者。8。Costagli M., Lapucci C., Zacà D., Bruschi N., Schiavi S., Castellan L., Stemmer A., Roccatagliata L., Inglese M.: “Improved detection of multiple sclerosis lesions with T2 ‐ prepared double inversion recovery at 3T”, Journal of Neuroimaging, DOI:10.1111/jon.13021 (2022).9。Lancione M.,Cencini M.,Costagli M.神经图像:临床34,102989(2022)。*通讯作者。10。Lancione M.,Donatelli G.,Cecchi P.,Cosottini M.,Tosetti M.,Costagli M。:“回声依赖性
苏迪普托;巴斯,拉维·N;戈萨尔,苏吉特; Padmanabham,G 智能制造杂志,2018,29,175-190 54. Sahoo, Santosh Kumar;比绍伊,比布杜塔;莫汉蒂,乌彭德拉·库马尔; Sahoo,Sushant Kumar;萨胡,贾姆贝斯瓦尔;沐浴,拉维·纳图拉姆 (Ravi Nathuram);激光束焊接对工业纯钛微观结构和力学性能的影响印度金属研究所学报 70 1817-1825 2017 55. S. Pradheebha、R. Unnikannan、Ravi N. Bathe、K. Chandra Devi、G. Padmanabham 和 R. Subasri;纹理对溶胶-凝胶纳米复合涂层表面润湿性的影响国家技术杂志 13 3 19-23 2017 56. Narsimhachary,D;巴斯,RN; Dutta Majumdar,J;帕德马纳巴姆,G;巴苏,A; 6061-T6铝合金双道激光焊缝组织与力学性能。工程中的激光 (Old City Publishing) 33 2016 57. Rikka, Vallabha Rao; Sahu,Sumit Ranjan;塔德帕利,拉贾帕;巴斯,拉维;莫汉,泰雅加拉詹;普拉卡什,拉朱;帕德玛纳布姆,加德;戈帕兰,拉加万;用于锂离子电池外壳的脉冲激光焊接不锈钢和铝合金的微观结构和力学性能 J Mater Sci Eng B 6 9–10 218-225 2016 58. Moharana, Bikash Ranjan; Sahu,Sushanta Kumar; Sahoo,Susanta Kumar;巴斯,拉维;通过 CO2 激光对 AISI 304 至 Cu 接头的机械和微观结构性能的实验研究工程科学与技术,国际期刊 19 2 684-690 2016 59. Bathe, Ravi;赛克里希纳,V;尼库姆布,SK; Padmanabham,GJAPA;灰铸铁的激光表面纹理化以改善摩擦学行为应用物理 A 117 117-123 2014 60. Bathe, R;帕德马纳巴姆,G;热障涂层高温合金中激光钻孔的评估材料科学与技术 30 14 1778-1782 2014 61. Bathe, Ravi;辛格,阿希什 K;帕德马纳巴姆,G;脉冲激光修整金属结合剂金刚石砂轮对切削性能的影响材料与制造工艺 29 3 386-389 2014 62. Narsimhachary,D;巴斯,拉维·N;帕德马纳巴姆,G;巴苏,A; 6061 T6铝合金激光焊接温度分布对微观组织和力学性能的影响材料与制造工艺 29 8 948-953 2014 63. Yagati, Krishna P;巴斯,拉维·N; Rajulapati,Koteswararao V; Rao,K Bhanu Sankara;帕德马纳巴姆,G;铝合金与钢的无焊剂电弧焊接钎焊材料加工技术杂志 214 12 2949-2959 2014 64. Nikumb, Suwas;巴斯,拉维;克诺夫,乔治 K;汽车、柔性电子和太阳能领域的激光微加工技术 太阳能、显示器和光电子设备的激光加工和制造 III 9180 17-26 2014 65. Padmanabham, G;克里希纳·普里亚,Y;帕尼·普拉巴卡,KV;拉维,N;洗澡,BhanuSankara Rao;P-MIG 和冷金属转移 (CMT) 工艺制成的铝钢接头界面特性和力学性能比较焊接研究趋势:第 9 届国际会议论文集 227-234 2013 66. Bathe, G. Padmanabham 和 Ravi;材料激光加工的应用 Kiran 24 2 2013 年 3 月 14 日 67. Padmanabham, G; Priya, Y Krishna; Prabhakar, KV Phani; Bathe, Ravi N;脉冲 MIG 和冷金属转移 (CMT) 工艺制成的铝钢接头界面特性和力学性能比较焊接研究趋势 2012:第 9 届国际会议论文集 227 2013 68. Chaki, Sudipto;Ghosal, Sujit; Bathe, Ravi N; 使用 GA-ANN 混合模型对脉冲 Nd:YAG 激光切割铝合金板的切口质量预测和优化国际机电一体化与制造系统杂志 5 4-Mar 263-279 2012 69. Sanikommu, Nirmala;Bathe, Ravi;Joshi, AS;激光冲击钻孔中的突破检测。工程激光(Old City Publishing)17 2007 70. Jejurikar, Suhas M;Banpurkar, AG;Limaye, AV;Patil, SI;Adhi, KP;Misra, P;Kukreja, LM;Bathe, Ravi;通过脉冲激光沉积在 Si(100)上沉积的异质外延 ZnO 薄膜的结构、形态和电学特性:空气中退火(800 C)的影响 应用物理学杂志 99 1 2006 71. Sahasrabudhe, MS; Patil, SI; Date, SK; Adhi, KP; Kulkarni, SD; Joy, PA; Bathe, RN;磁性(Fe+ 3)和非磁性(Ga+ 3)离子掺杂在 Mn 位对 La0. 7Ca0. 3MnO3 传输和磁性的影响 固态通信 137 11 595-600 2006 72. Ogale, SB; Bathe, RN; Choudhary, RJ; Kale, SN; Ogale, Abhijit S; Banpurkar, AG; Limaye, AV;边界效应对薄沉降颗粒堆稳定性的影响 Physica A: 统计力学及其应用 354 49-58 2005 73. Alves, G; Doerr, TP; Arenzon, JJ; Levin, Y; Avelar, AT; Monteiro, PB; Bai, BD; Jiang, W; Banpurkar, AG; Ogale, SB;第 354 卷作者和论文索引 psychology 354 463 2005 74. Sahasrabudhe, MS; Bathe, RN; Sadakale, SN; Patil, SI; Date, SK; Ogale, SB;La0. 7Ca0. 3MnO3 中 Mn 位金属离子取代的影响:电荷、自旋、离子半径和Ravi N; 使用 GA-ANN 混合模型对脉冲 Nd:YAG 激光切割铝合金板的切口质量预测和优化国际机电一体化与制造系统杂志 5 4-Mar 263-279 2012 69. Sanikommu, Nirmala;Bathe, Ravi;Joshi, AS;激光冲击钻孔中的突破检测。工程激光(Old City Publishing)17 2007 70. Jejurikar, Suhas M;Banpurkar, AG;Limaye, AV;Patil, SI;Adhi, KP;Misra, P;Kukreja, LM;Bathe, Ravi;通过脉冲激光沉积在 Si(100)上沉积的异质外延 ZnO 薄膜的结构、形态和电学特性:空气中退火(800 C)的影响 应用物理学杂志 99 1 2006 71. Sahasrabudhe, MS; Patil, SI; Date, SK; Adhi, KP; Kulkarni, SD; Joy, PA; Bathe, RN;磁性(Fe+ 3)和非磁性(Ga+ 3)离子掺杂在 Mn 位对 La0. 7Ca0. 3MnO3 传输和磁性的影响 固态通信 137 11 595-600 2006 72. Ogale, SB; Bathe, RN; Choudhary, RJ; Kale, SN; Ogale, Abhijit S; Banpurkar, AG; Limaye, AV;边界效应对薄沉降颗粒堆稳定性的影响 Physica A: 统计力学及其应用 354 49-58 2005 73. Alves, G; Doerr, TP; Arenzon, JJ; Levin, Y; Avelar, AT; Monteiro, PB; Bai, BD; Jiang, W; Banpurkar, AG; Ogale, SB;第 354 卷作者和论文索引 psychology 354 463 2005 74. Sahasrabudhe, MS; Bathe, RN; Sadakale, SN; Patil, SI; Date, SK; Ogale, SB;La0. 7Ca0. 3MnO3 中 Mn 位金属离子取代的影响:电荷、自旋、离子半径和Ravi N; 使用 GA-ANN 混合模型对脉冲 Nd:YAG 激光切割铝合金板的切口质量预测和优化国际机电一体化与制造系统杂志 5 4-Mar 263-279 2012 69. Sanikommu, Nirmala;Bathe, Ravi;Joshi, AS;激光冲击钻孔中的突破检测。工程激光(Old City Publishing)17 2007 70. Jejurikar, Suhas M;Banpurkar, AG;Limaye, AV;Patil, SI;Adhi, KP;Misra, P;Kukreja, LM;Bathe, Ravi;通过脉冲激光沉积在 Si(100)上沉积的异质外延 ZnO 薄膜的结构、形态和电学特性:空气中退火(800 C)的影响 应用物理学杂志 99 1 2006 71. Sahasrabudhe, MS; Patil, SI; Date, SK; Adhi, KP; Kulkarni, SD; Joy, PA; Bathe, RN;磁性(Fe+ 3)和非磁性(Ga+ 3)离子掺杂在 Mn 位对 La0. 7Ca0. 3MnO3 传输和磁性的影响 固态通信 137 11 595-600 2006 72. Ogale, SB; Bathe, RN; Choudhary, RJ; Kale, SN; Ogale, Abhijit S; Banpurkar, AG; Limaye, AV;边界效应对薄沉降颗粒堆稳定性的影响 Physica A: 统计力学及其应用 354 49-58 2005 73. Alves, G; Doerr, TP; Arenzon, JJ; Levin, Y; Avelar, AT; Monteiro, PB; Bai, BD; Jiang, W; Banpurkar, AG; Ogale, SB;第 354 卷作者和论文索引 psychology 354 463 2005 74. Sahasrabudhe, MS; Bathe, RN; Sadakale, SN; Patil, SI; Date, SK; Ogale, SB;La0. 7Ca0. 3MnO3 中 Mn 位金属离子取代的影响:电荷、自旋、离子半径和SB;第 354 卷作者和论文索引 心理学 354 463 2005 74. Sahasrabudhe,MS;Bathe,RN;Sadakale,SN;Patil,SI;Date,SK;Ogale,SB;La0.7Ca0.3MnO3 中 Mn 位金属离子取代的影响:电荷、自旋、离子半径和SB;第 354 卷作者和论文索引 心理学 354 463 2005 74. Sahasrabudhe,MS;Bathe,RN;Sadakale,SN;Patil,SI;Date,SK;Ogale,SB;La0.7Ca0.3MnO3 中 Mn 位金属离子取代的影响:电荷、自旋、离子半径和
Harnad,S。(1990) Kodansha。 3。Matsubara,J。和Kawamura,H。(2019年)。 , 240–246。 McCarthy, J., & Hayes, P. (1969). 从人工智能的角度看一些哲学问题。收录于 B. Meltzer 和 D. Michie (编),机器智能,4 (第 463–502 页)。英国爱丁堡:爱丁堡大学出版社。 (McCarthy, J. Hayes, P. Miura (译) (1990). 人工智能为什么需要哲学?框架问题的起源和发展。哲学书房) Searle, J. (1980). 思想、大脑和程序。行为与脑科学,3,417–457。 Shanahan, M. (1997). 解决框架问题。马萨诸塞州剑桥:麻省理工学院出版社。 Silver, D., Huang, A., Maddison, CJ、Guez、A.、Sifre、L.、van den Driessche、G.、...... Hassabis、D. (2016)。利用深度神经网络和树搜索掌握围棋游戏。《自然》,529,445–446。Watanabe、A. 和 Yasuki、K. (2007)。Bonanza 与游戏大脑:最强的将棋软件会超越人类吗?角川书店 Yamamoto、K. (2017)。人工智能是如何超越大师的? ─最强将棋AI开发者Ponanza教授
栅极金属氧化物半导体异质结构场效应晶体管 (DG MOS-HFET)”,超晶格和微结构 - ELSEVIER Publishers,第 55 卷,第 8-15 页,2013 年。ISSN:0749-6036,DOI:10.1016/j.spmi.2012.12.002(SCI 影响因子 2.12)3. Sudhansu Kumar Pati、KalyanKoley、ArkaDutta、N. Mohankumar 和 Chandan Kumar Sarkar,“一种提取具有 NQS 效应的非对称 DG MOSFET 的 RF 参数的新方法”,半导体杂志- IOP Publishers,第 55 卷34,第 2 期,第 1-5 页,2013 年 11 月。ISSN:1674-4926,DOI:10.1088/1674-4926/34/11/114002(SCI - 影响因子 1.18)4. Sudhansu Kumar Pati、KalyanKoley、ArkaDutta、N. Mohankumar 和 Chandan Kumar Sarkar,“体和氧化物厚度变化对下重叠 DG- MOSFET 模拟和 RF 性能的影响研究”,Microelectronics Reliability-Elsevier Publishers,Vol. 54,第 6-7 期,第 1137-1142 页,2014 年。ISSN:0026-2714,DOI:10.1016/j.microrel.2014.02.008 5. HemantPardeshi、Sudhansu Kumar Pati、Godwin Raj、N. Mohankumar 和 Chandan Kumar Sarkar,“欠重叠和栅极长度对 AlInN/GaN 欠重叠 MOSFET 器件性能的影响”,半导体杂志,IOP Science publishers,第 54 卷。 33, No. 12, 2012 年,第 1-7 页。ISSN:1674-4926,DOI:10.1088/1674- 4926/33/12/124001(SCI-影响因子 1.18) 6. HemantPardeshi、Sudhansu Kumar Pati、Godwin Raj、N. Mohankumar 和 Chandan Kumar Sarkar,“研究 III-V 异质结构欠重叠 DG MOSFET 中栅极错位、栅极偏置和欠重叠长度导致的不对称效应”,Physica E:低维系统和纳米结构,Elsevier,Vol. 46,第 61-67 页,2012 年。ISSN:1386-9477,DOI:10.1016/j.physe.2012.09.011(SCI 影响因子 3.57) 7. HemantPardeshi、Godwin Raj、Sudhansu Kumar Pati、N. Mohankumar 和 Chandan Kumar Sarkar,“III-V 异质结构与硅底搭接双栅极 MOSFET 的比较评估”,半导体,Springer,第 46 卷。 46,第 10 期,2012 年,第 1299–1303 页。ISSN:1090-6479,DOI:10.1134/S1063782612100119(SCI - 影响因子 0.641) 8. Godwin Raj、HemantPardeshi、Sudhansu Kumar Pati、N. Mohankumar 和 Chandan Kumar Sarkar,“基于物理的 AlGaN/GaN HEMT 器件电荷和漏极电流模型”,Journal of Electron Devices,Vol. 14,第 1155-1160 页,2012 年。ISSN:1682-3427 9. Godwin Raj、HemantPardeshi、Sudhansu Kumar Pati、N. Mohankumar 和 Chandan Kumar Sarkar,“基于极化的电荷密度漏极电流和纳米级 AlInGaN/AlN/GaN HEMT 器件的小信号模型”,超晶格和微结构,Elsevier,Vol. 54,第 188-203 页,2013 年。ISSN:0749-6036,DOI:10.1016/j.spmi.2012.11.020(SCI 影响因子 2.12) 10. HemantPardeshi、Godwin Raj、Sudhansu Kumar Pati、N. Mohankumar 和 Chandan Kumar Sarkar,“势垒厚度对 AlInN/GaN 下重叠 DG MOSFET 器件性能的影响”,超晶格与微结构,Elsevier,第 60 卷,第 47-59 页,2013 年。ISSN:0749-6036,DOI:10.1016/j.spmi.2013.04.015(SCI 影响因子 2.12)
当前的研究与开发:通过适当调整竞争相的体积分数,我们实现了创纪录的巨大磁阻值(在 90 kOe 外部磁场中约为 10 15 %)。之前世界上任何地方已知的 MR% 约为 10 7 %),以及半掺杂 Sm 0.5 Ca 0.25 Sr 0.25 MnO 3 锰氧化物化合物中的超尖锐亚磁转变 [NPG Asia Materials (IF: 10.76), 10 (2018) 923]。我们仅通过调整 PLD 制备的氧化物外延 Sm 0.5 Ca 0.25 Sr 0.25 MnO 3 薄膜中的应变(应变工程)就增强了磁阻 [J. Magn. Magn. Mater. 503 (2020) 166627]。开发了采用PLD在商用热氧化Si衬底上生长优质半金属La 0.7 Sr 0.3 MnO 3 超薄膜的“两步”技术,并观察到跨晶界的自旋极化传输 [J. Magn. Magn. Mater. 527 (2021) 167771]。制备了(Sm 1-y Gd y ) 0.55 Sr 0.45 MnO 3 (y = 0.5 和 0.7)化合物,并表明晶界处的自旋极化隧穿(SPT)传输机制对化合物低场磁阻的增强起着至关重要的作用 [J.Phys: Condens. Matter 33 (2021) 305601]。报道了纳米晶 (La 0.4 Y 0.6 ) 0.7 Ca 0.3 MnO 3 化合物中由粒径驱动的非格里菲斯相向格里菲斯相的改性以及磁阻的大幅增强 [J. Alloys & Compound 745 (2018) 753]。制备了铁磁性 (La 0.67 Sr 0.33 MnO 3 ) - 电荷有序 (Pr 0.67 Ca 0.33 MnO 3 )、核壳纳米结构,并在更宽的温度范围内观察到了较大的磁热熵变值 (-∆SM ) [J. Magn. Magn. Mater. 436 (2017) 97]。在室温附近观察到了 La 0.83 Sr 0.17 MnO 3 化合物中显著较大的磁热效应,可视为磁制冷材料 [Physica B 545 (2018) 438]。我们在制备的 BiGdO 3 化合物中展示了低温下的巨磁热效应(∆SM = 25 J kg -1 K -1 & ∆T= 14.8K),并解释了其由于短程磁关联的存在而产生的成因 [J. Alloys and Compounds 846 (2020), 156221]。我们利用磁热效应构建了所制备的单晶 Sm 0.50 Ca 0.25 Sr 0.25 MnO 3 化合物的复磁相图 [J. Magn. Magn. Mater. 497 (2020) 166066]。对采用移动溶剂浮区炉制备的单晶 Sm 0.5 Ca 0.25 Sr 0.25 MnO 3 化合物的磁相变进行了实空间成像,并观察到了亚微米长度尺度上的 AFM-FM 相的存在 [J.Phys: Condens. Matter 33(2021) 235402]。我们已经证明了核心和表面自旋之间的短程磁相互作用在纳米晶掺杂锰氧化物中的交换偏置和记忆效应中的主导作用 [J. Alloys and Compounds 870 (2021), 159465]。与通常使用的磁化数据相反,利用反常霍尔效应研究了 skyrmion 载体材料 Co 3.6 Fe 4.4 Zn 8 Mn 4 的临界行为和相图。这为使用反常霍尔效应研究 skyrmion 载体和其他薄膜多层、介观器件等中的临界现象开辟了新方向。这对 skyrmion 载体材料的开发和未来 skyrmionic 存储器件的开发大有裨益 [J. of Alloys and Compounds 960 (2023) 170274]。