机会 - 地质和地球物理特性在全球范围内的地质机器学习,我们对地球特性的集体理解受到直接观察地质的观察(例如,井原木,核心等)或间接通过遥感(例如地球物理或卫星观测)。这一事实导致在高空间分辨率(至sub-km量表)处的地球特性的稀疏数据集,或者从卫星观测值中产生了一个连续但低分辨率的数据集。因此,需要自动插值(例如Kriging)和/或人类知情轮廓,以在高分辨率下持续了解这些属性。在这项工作中,我们致力于改进这些方法。利用机器学习,深度学习和/或物理知情神经网络(PINN)的新发展,我们可以在空间和深度上智能插入或预测地球参数。这项工作利用了地质观察的各种数据源(即“大数据”),例如:科学钻孔,挖出和疏ed和地球物理观察,例如由乘员船(例如,船舶),自主平台(例如,AUV)(例如,AUV)和Satellites和Satellites和Satellites和Satellites和Satellites。我们将这些数据集与基于物理学的地质过程模型(例如压实)和数据驱动方法(例如机器学习)结合使用,以产生对地球特性的连续且准确的估计。这些方法的示例包括从稀疏的船板观测值中预测连续的重力场,或使用核心数据预测沉积物岩性与深度。鼓励基本的地质理解,但不需要。我们寻求具有地质/地球物理学经验的合格申请人,遥感/地理位置,机器学习/数据科学和/或运输/摇滚物理建模。申请人将有一些计算经验,并且在基本的编程/脚本中保持舒适(不需要特定语言)。实验室地点:海洋科学部海军研究实验室Stennis Space Center,MS POC:Benjamin Phrampus海军研究实验室,代码7352建筑物1005 Stennis Space Center,MS 39529电话:228-688-4899电子邮件:Benjamin.phrampus.civ@us.civ@us.navy.mil
主管:本·莫斯利(Ben Moseley)关键字:多尺度模拟,物理知识的神经网络,多GPU计算,多级方法,di =构成方程,科学的机器学习背景科学研究依赖于我们模拟科学现象的能力。从了解生物系统如何与建模宇宙的演变相互作用,模拟使我们能够预测特性,检验假设和探索可能是di = icult的场景,可以通过实验进行研究。我们今天对研究的许多物理系统表现出强烈的多尺度现象。这些系统的特征是它们在多个空间和时间尺度上的复杂相互作用,例如,在全球气候模型中云与大气循环的相互作用,或形成层次暗物质结构。准确地进行多尺度模拟会带来一个重要的挑战,因为它需要可以正确捕获这些相互作用的复杂模型。此外,传统数值模拟的计算成本(例如有限的di =和有限元建模)可能是巨大的,需要为每个仿真使用超级计算机。近年来,科学机器学习的领域已经解决了克服这些挑战的新方法[1]。例如,物理信息的神经网络(PINN)[2,3]是一种使用神经网络进行模拟的方法。与传统的数值方法相比,它们不需要复杂的模拟网格,并且可以轻松地合并观察数据以了解相互作用。但是,使用PINNS开箱即用的是显着的挑战。它们在训练上可能是计算上昂贵的,并且可能难以建模多尺度的互动。我们最近的工作[4,5]表明,Pinns可以通过将它们与域分解和多级建模相结合,从而进行多尺度模拟E =。域分解允许将全局仿真问题分解为较小,易于解决的问题,而多级建模则可以在多尺度交互之间提供更好的通信。
该过程的计算成本可能很高,特别是对于高维问题以及需要非结构化网格时,例如为了解释局部不规则行为。然后可以使用各种数值方法(例如有限元 (FEM)、有限差分 (FDM) 或有限体积 (FVM))求解该离散方案。但即使是这些方法对于大型复杂问题也可能效率低下。例如,描述流体运动的 Navier-Stokes 方程的解可能需要超级计算机上数百万小时的 CPU 或 GPU 时间。另一个例子是泊松方程,它是工程学中最重要的偏微分方程之一,包括热传导、引力和电动力学。在高维环境中对其进行数值求解只能使用迭代方法,但迭代方法通常不能很好地随着维度而扩展和/或在处理边界条件或生成离散化网格时需要专业知识。神经网络 (NN) 非常适合解决此类复杂 PDE,并且已在工程和应用数学的各个领域用于复杂回归和图像到图像的转换任务。科学计算界早在 20 世纪 80 年代就已将其应用于 PDE 求解 [ 20 ],但近年来人们对它的兴趣呈爆炸式增长,部分原因是计算技术的显著进步以及此类网络公式的改进,例如在 [ 4 , 21 , 32 ] 中详细介绍和强调过。量子计算是一种变革性的新范式,它利用了微观物理尺度上的量子现象。虽然设计难度显著增加,但量子计算机可以运行专门的算法,这些算法的扩展性比传统计算机更好,有时甚至呈指数级增长。量子计算机由量子位组成,与传统数字计算机中的位不同,量子位基于量子物理的两个关键原理存储和处理数据:量子叠加和量子纠缠。它们通常会出现特定的误差,即量子误差,这些误差与其量子比特的量子性质有关。即使目前还没有足够复杂度的量子计算机,我们也显然需要了解我们希望在其上执行哪些任务,并设计方法来减轻量子误差的影响 [ 29 ]。量子神经网络形成了一类新的机器学习网络,利用叠加和纠缠等量子力学原理,有可能处理复杂问题和 / 或高维空间。量子神经网络的建议架构包括 [ 7 , 11 , 34 ],并表明它可能具有潜在的优势,包括更快的训练速度。对量子机器学习的初步理论研究表明,量子网络可以产生更易于训练的模型 [ 1 ]。这与使用机器学习解决 PDE 问题尤其相关,因为产生更有利损失景观的技术可以大大提高这些模型的性能 [13,18]。在目前的研究中,我们提出了一种制定量子神经网络的新方法,将一些经典的机器学习技术转化为量子设置,并在特定的 PDE(Heat、Poisson 和 HJB 方程)背景下开发复杂性分析。这提供了一个框架来展示量子神经网络作为 PDE 求解器的潜力和多功能性。本文结构如下:第 2 部分介绍 PINN 算法,并回顾经典和量子网络的基础知识。在第 3 部分中,我们介绍了一种新颖的