物体 1 的点 P 1 和 w 2 是物体 2 平面 C 的点 P 2 的变形,C 是切线的原点 1 平面;z l 是从 P l 到 的距离
摘要 - 这项研究提出了一种实现光学透明梁向导天线的方法。使用液晶(LC)技术的RF和光学特征与透明的金属网格结合使用,以实现第一个光学透明的可重新配置反射式(RA)。由于偏置和射频(RF)信号的电场高度不均匀,因此LC介电常数既是各向异性和不均匀的,因此在天线设计之前,需要获得准确的LC分子的行为以进行准确的建模。分析了由金属网格和LC组成的单元细胞,并获得了LC局分布。导演数据被转换为整个LC体积中的介电常数张量,并在电磁模拟软件中离散LC以执行全波周期性边界模拟以建模各向异性和不均匀性。离散的模型由具有GT7 LC材料的新介电常数范围的单个介电块近似。根据光学和RF性能制造并测量10×10 RA。当电压从0 V增加到40 V时,单位电池的测得的相移为260°。在E平面中,测得的梁扫描从-10˚到50°,在H -Plane中,H -Plane的最大最大增益为14.35 dbi。还测量了原型光学性能。讨论了当前RF LC混合物的好处和缺点。它表明,使用针对RF和光学传输优化的适当LC混合物,基于LC的光学透明天线是各种新应用的可行解决方案。
我们确定飞机之间的最小安全间距以及空中交通管制系统的复杂性。考虑到领先飞机在其尾流中留下的涡流,一架飞机的尾部和下一架飞机的机头之间的距离应至少为 5.5 公里或 3.4 英里。相邻飞机之间的最小间距(无论是侧面、上方还是下方)应至少为 730 米或 0.45 英里。这些距离是使用伯努利原理计算的,该原理指出,流体(例如空气)的速度增加时,其内部压力会降低。由于飞机的速度非常高,机翼周围的压力很低。与伯努利因子相关的压力变化施加在面对的表面区域上,导致将飞机推到一起的力;这种力量可能会改变飞机的飞行模式。最后,如果两架飞机相向而行,它们之间必须有足够的空间来执行规避动作。我们发现需要 12 秒;在正常飞行速度下,这相当于 2.9 公里或 1.8 英里。我们将空域扇区的复杂性定义为在给定时间段内发生冲突的概率。为了确定复杂性,我们假设扇区是长方体,飞机以平行或反平行方向飞行。我们计算一架飞机在另一架飞机之后过早进入扇区的概率,或者两架飞机以反平行方向进入同一航道的概率。
第 4.3.5.1 节(金属接地平面)新增了全新的图 5,要求从测试设置边界的边缘到接地平面的边缘的任何方向都有 2.5 米的距离,而标准早期版本中为 1.5 米。更改是基于希望接地平面位于整个设置、各种测试中使用的天线下方,并且任何此类天线背面以外的距离仍被接地平面覆盖。另请注意,图 5 将看起来像卡车或其他有轮车辆的东西(但不应该如此)替换为看起来像电子外壳的东西。始终强调 MIL-STD-461 适用于设备和子系统,而不是平台,这一点很重要。此外,电缆布置在桌面接地平面上方 5 厘米处,而不是“F”中那样的地板上方 5 厘米处。
图 3.4.1-1:虚拟喷嘴配置 17 图 3.4.1-2:液压油理论排放速度 19 图 3.4.1-3:喷火热释放率 20 图 3.4.1-4:喷火火焰长度 21 图 3.4.1-5:喷火火焰发射功率 22 图 3.4.1:火焰与目标平面之间的关系 23 图 3.4.1-6:距喷射火焰 0.50 米处垂直平面的辐射热通量 24 图 3.4.1-7:距喷射火焰 0.75 米处垂直平面的辐射热通量 24 图 3.4.1-8:距喷射火焰 1.00 米处垂直平面的辐射热通量 25 图 3.4.1-9:距喷射火焰 2.00 米处垂直平面的辐射热通量m 距离喷射火焰 25 图 3.4.1-10: 距离喷射火焰 4.00 m 处垂直平面的辐射热通量 26 图 3.4.1-11: 距离喷射火焰 6.00 m 处垂直平面的辐射热通量 26 图 3.4.1-12: 距离喷射火焰 10.00 m 处垂直平面的辐射热通量 27 图 3.4.1-13: 目标热通量与距离 27 图 3.4.2-1: 预测热释放率与池直径 30 图 3.4.2-2: 池火每单位表面积质量燃烧率 31 图 3.4.2-3: 池火增长至峰值热释放率的时间 32 图 3.4.2-4: 池火火焰高度 33 图 3.4.2.1-1: 距离垂直平面 5.5 m 处的辐射热通量来自 JP-4 池火 35 图 3.4.2.1-2: 辐射热通量至垂直平面 5.75 米 来自 JP-4 池火 35 图 3.4.2.1-3: 辐射热通量至垂直平面 6.0 米 来自 JP-4 池火 36 图 3.4.2.1-4: 辐射热通量至垂直平面 8.0 米 来自 JP-4 池火 36 图 3.4.2.1-5: 辐射热通量至垂直平面 10.0 米 来自 JP-4 池火 37 图 3.4.2.1-6: 辐射热通量至垂直平面 15.0 米 来自 JP-4 池火 37 图 3.4.2.1-7: 辐射热通量至垂直平面 20.0 米 来自 JP-4 池火 38 图 4.1-1: 火灾热量释放速率 41 图 4.1-2:隔间气体层温度 42 图 4.1-3:层界面高度 42 图 4.1-4:目标辐射热通量 43 图 4.1-5:目标热通量与离火距离的关系 43 图 4.2.1-1:热释放速率随隔间尺寸变化 44 图 4.2.1-2:不同隔间尺寸的层温度 45 图 4.2.1-3:15x15 米垂直目标隔间的热通量 46 图 4.2.1-4:5x5 米垂直目标隔间的热通量 46 图 4.2.2-1:不同火势大小的对流热释放速率 47 图 4.2.2-2:不同火势大小的辐射热释放速率 47 图 4.2.2-3:稳态热释放速率与火灾直径 48 图 4.2.2-4:不同火灾大小的上层温度 48 图 4.2.2-5:不同火灾大小的下层温度 49 图 4.2.2-6:稳定状态层温度与火灾直径 49 图 4.2.2-7:2.5 米直径火灾的目标热通量 50 图 4.2.2-8:2.0 米直径火灾的目标通量 51 图 4.2.2-9:1.5 米直径火焰的目标通量 51
碰撞。已将飞机设定为小速度作为参考。参考飞机将执行平衡转弯,转向半空间,该半空间由速度矢量和垂直方向构成的平面定义,未被入侵飞机占据。要确定入侵飞机的新轨迹,必须考虑平面表面,其法向矢量为参考飞机的速度矢量。使用此平面作为参考,入侵飞机将执行平衡转弯,转向其速度矢量指向的半空间。