摘要:自闭症谱系障碍(ASD)是一组复杂的神经发育障碍,会影响沟通和社交互动,并以受限的兴趣和重复行为模式出现。对ASD的敏感性受到遗传/可遗传因素的强烈影响;但是,了解ASD神经生物学的基础机制仍然存在很大的差距。在识别ASD风险基因以及在开发过程中这些基因网络调节的可能收敛途径已取得了显着进步。通过细胞重编程技术的突破使综合症和特发性ASD个体的诱导多能干细胞(IPSC)产生,从而为机械研究提供了患者特异性细胞模型。在过去的十年中,已经建立了从这些细胞开发脑器官的方案,从而导致人脑发育早期步骤的体外可重复性的显着进步。在这里,我们回顾了有关脑器官在ASD研究,提供当前艺术状态的最相关文献,并讨论了此类模型对未来发展的领域,局限性和机会的影响。
摘要:遗传性视网膜疾病(IRD)影响着全球数百万人,是导致不可逆失明的主要原因。基于药物、基因增强或移植方法的治疗方法已被广泛研究和提出。在视网膜退行性疾病的基因疗法中,快速发展的基因组编辑 CRISPR/Cas 技术已成为一种新的潜在治疗方法。CRISPR/Cas 系统已成为眼科研究中强大的基因组编辑工具,不仅已应用于体内基因治疗的原理证明,而且还已广泛应用于培养皿中疾病模型的基础研究中。事实上,CRISPR/Cas 技术已被用于基因改造人类诱导多能干细胞(iPSC),以体外模拟视网膜疾病,测试体外药物和疗法并为自体移植提供细胞来源。在这篇综述中,我们将重点关注基于 iPSC 的细胞重编程和基因编辑技术的技术进步,以创建准确重现 IRD 机制的人类体外模型,从而开发治疗视网膜退行性疾病的方法。
摘要 基因组和组织工程的进步推动了癌症建模的重大进展和创新机会。人类诱导多能干细胞 (iPSC) 是一种成熟而强大的工具,可用于研究疾病特异性遗传背景下的细胞过程;然而,由于许多转化细胞无法成功进行重编程,它们在癌症中的应用受到了限制。在这里,我们回顾了人类 iPSC 在基因工程背景下对实体肿瘤进行建模的现状,包括如何将基础和主要编辑纳入“自下而上”的癌症建模中,这是我们为使用基因工程诱导转化的基于 iPSC 的癌症模型创造的一个术语。这种方法避免了对癌细胞进行重编程的需要,同时允许以高精度和可控性剖析转化、进展和转移背后的遗传机制。我们还讨论了各个工程方法的优势和局限性,并概述了建立未来模型的实验考虑因素。
基因组和组织工程的抽象进步刺激了癌症建模创新的显着进步和机会。人类诱导的多能干细胞(IPSC)是在特定于疾病的遗传背景下研究细胞过程的已建立且强大的工具;然而,它们在癌症上的应用受到许多转化细胞对成功重编程的阻力的限制。在这里,我们在基因工程的背景下回顾了实体瘤的人IPSC建模的状态,包括如何将基础和主要编辑纳入“自下而上”的癌症建模中,这是我们使用基因工程来诱导转化的基于IPSC的癌症模型创造的术语。这种方法规定了对癌细胞进行重编程的需求,同时允许解剖具有高度的精度和对照的转化,进展和转移的遗传机制。我们还讨论了建立未来模型的重大工程方法的优势和局限性。
1 德国海德堡大学曼海姆大学医学中心(UMM)医学院第一医学系,邮编 68167 曼海姆;rujia.zhong@medma.uni-heidelberg.de (RZ);schimanski.t@gmail.com (TS);feng.zhang@medma.uni-heidelberg.de (FZ);huan.lan@medma.uni-heidelberg.de 或 lh6402196@126.com (HL);alyssa.hohn@web.de (AH);qiang.xu@medma.uni-heidelberg.de (QX);mengying.huang@medma.uni-heidelberg.de (MH);zhenxing.liao@medma.uni-heidelberg.de (ZL);lin.qiao@medma.uni-heidelberg.de (LQ); zhen.yang@medma.uni-heidelberg.de (ZY); yingrui.li@medma.uni-heidelberg.de (YL); zhihan.zhao@medma.uni-heidelberg.de (ZZ); xin.li@medma.uni-heidelberg.de (XL); roselena1996@gmail.com (LR); sebastian9876@googlemail.com (SA); lasse-maywald@web.de (LM); jonasnelsonmueller@googlemail.com (JM); hendrik.dinkel@yahoo.de (HD); yannick.xi@medma.uni-heidelberg.de (YX); siegfried.lang@umm.de (SL); ibrahim.akin@umm.de (IA) 2 DZHK(德国心血管研究中心),合作伙伴网站,68167 曼海姆,德国; narasimha.swamy@mdc-berlin.de (NS); mandy.kleinsorge@gwdg.de (MK); sebastian.dieck@mdc-berlin.de (SD); lukas.cyganek@gwdg.de (LC) 3 西南医科大学心血管研究所,教育部医学电生理重点实验室,四川省医学电生理重点实验室,泸州 646000,中国 4 苏黎世大学心脏中心心脏病学系,Rämistrasse 100,8091 苏黎世,瑞士;ardan.saguner@usz.ch (AS); first.duru@usz.ch (FD) 5 海德堡大学人类遗传学研究所人类遗传学系,69120 海德堡,德国; johannes.jannsen@uni-heidelberg.de 6 马克斯·德尔布吕克分子医学中心,13125 柏林,德国 7 哥廷根大学医学中心心脏病学和肺病学诊所干细胞科,37075 哥廷根,德国 8 波鸿鲁尔大学贝格曼希尔大学医院,44789 波鸿,德国;ibrahim.elbattrawy2006@gmail.com * 通讯地址:xiaobo.zhou@medma.uni-heidelberg.de;电话:+49-621-383-1448;传真:+49-621-383-1474 † 这些作者对本文的贡献相同。‡ 这些作者为高级作者。
摘要:应用 CRISPR/Cas9 系统将荧光蛋白敲入人类多能干细胞 (hPSC) 中的内源性目的基因,有可能促进基于 hPSC 的疾病建模、药物筛选和移植疗法优化。为了评估荧光报告 hPSC 系用于高内涵筛选方法的能力,我们将 EGFP 靶向内源性 OCT4 基因座。产生的 hPSC–OCT4–EGFP 系表达与多能性标记物一致的 EGFP,并且可以适应多孔格式以进行高内涵筛选 (HCS) 活动。然而,在长期培养后,hPSC 暂时失去了 EGFP 表达。或者,通过将 EGFP 敲入 AAVS1 基因座,我们建立了稳定且一致的 EGFP 表达 hPSC–AAVS1–EGFP 系,该系在体外造血和神经分化期间保持 EGFP 表达。因此,hPSC–AAVS1–EGFP 衍生的感觉神经元可适应高内涵筛选平台,该平台可应用于高通量小分子筛选和药物发现活动。我们的观察结果与最近的发现一致,表明在 OCT4 基因座进行 CRISPR/Cas9 基因组编辑后会出现高频率的靶向复杂性。相反,我们证明 AAVS1 基因座是 hPSC 中的安全基因组位置,具有高基因表达,不会影响 hPSC 质量和分化。我们的研究结果表明,应应用 CRISPR/Cas9 整合的 AAVS1 系统来生成稳定的报告 hPSC 系以用于长期 HCS 方法,并且它们强调了仔细评估和选择应用的报告细胞系以用于 HCS 目的的重要性。
CRISPR/Cas9 系统前所未有地革新了基因组编辑技术,该技术已成功应用于几乎所有生物科学分支。尽管在基因操作方面取得了很大成功,但大多数方法仍然费力且需要整合,并且需要长时间来扩增突变细胞库/克隆,而表现出功能性敲除效率的细胞较少。为了克服这些障碍,我们在此描述了一种高效、廉价、无整合且快速的一步式方案,用于小鼠多能干细胞 (PSC) 中的 CRISPR/Cas9 辅助基因敲除。我们的方案简化了基于脂质体的转染系统和筛选策略,使其能够更有效地处理少量 PSC(~2.0 × 10 4 个细胞),并最大限度地减少慢病毒包装、转导和单克隆传代等繁琐的步骤。在我们的方法中,约 90%(CI = 95%,79.5230% – 100%)的 PSC 菌落具有蛋白质表达方面的功能性敲除。因此,目前的方案在技术上可行、省时且高效,可用于多能干细胞中的基因组编辑。
CRISPR-Cas 系统为研究人员提供了真核基因组编辑工具和治疗平台,可以靶向体细胞器官中的疾病突变。大多数此类工具采用 II 型(例如 Cas9)或 V 型(例如 Cas12a)CRISPR 酶在基因组中造成 RNA 引导的精确双链断裂。然而,此类技术在进行有针对性的大片段缺失方面能力有限。最近,在微生物中普遍存在并表现出独特酶特征的 I 型 CRISPR 系统已被用于有效地在人类细胞中造成大片段染色体缺失。I 型 CRISPR 首先使用一种称为 Cascade 的多亚基核糖核蛋白 (RNP) 复合物来找到其引导互补的靶位,然后招募解旋酶核酸酶 Cas3 沿着目标 DNA 行进并以高持续性进行长距离撕裂。当以纯化的 RNP 形式引入人体细胞时,CRISPR-Cas3 复合物可有效诱导 CRISPR 靶位点上不同长度(1-100 kb)的大型基因组缺失。由于这种独特的编辑结果,CRISPR-Cas3 在诸如去除整合的病毒基因组和研究影响基因功能和人类疾病的结构变异等任务中具有巨大前景。在这里,我们提供了使用 CRISPR-Cas3 引入大型缺失的详细方案。我们描述了从 Thermobifida fusca 中纯化 IE 型 CRISPR 蛋白 Cascade 和 Cas3、将 RNP 电穿孔到人体细胞中以及使用 PCR 和测序表征 DNA 缺失的分步程序。我们在此重点关注人类多能干细胞,因为它们具有临床潜力,但这些方案将广泛应用于其他细胞系和模型生物,包括大型基因组缺失、全基因或染色体去除、以及非编码元素的 CRISPR 筛选等。© 2022 Wiley Periodicals LLC。
规则,必须为20nt+PAM形式,突变位点在sgRNA编辑窗口2-8内,获得符合基因编辑条件的治疗靶点。为避免基因编辑过程中的旁观者编辑,我们建议仅对sgRNA编辑窗口2-8内的一个突变位点进行编辑。其他数据库如ClinVar(https://www.ncbi.nlm.nih.gov/clinvar/)也是推荐的。
摘要:人类多能干细胞 (hPSC) 衍生的神经元培养物已成为人类大脑电活动的模型。微电极阵列 (MEA) 可测量细胞培养物或组织的细胞外电位变化,并能够记录神经元网络活动。MEA 已应用于人类受试者和 hPSC 衍生的大脑模型。在这里,我们回顾了使用 MEA 对 hPSC 衍生的二维和三维大脑模型进行功能表征的文献,并在生理和病理背景下检查了它们的网络功能。我们还总结了人类大脑的 MEA 结果,并将其与有关 hPSC 衍生大脑模型的 MEA 记录的文献进行比较。MEA 记录显示二维 hPSC 衍生大脑模型中的网络活动与人类大脑相当,并揭示了疾病模型中与病理相关的变化。与二维模型相比,三维 hPSC 衍生模型(例如脑类器官)具有更相关的微环境、组织结构和对更复杂的网络活动进行建模的潜力。hPSC 衍生的大脑模型重现了人类大脑网络功能的许多方面并提供了有效的疾病模型,但这些方法需要分化方法、生物工程和可用的 MEA 技术方面的某些进步才能充分发挥其潜力。
